Romeo and Julia, where Romeo
is Basic Statistics

Bartlomiej Lukaszuk

Bartlomiej Lukaszuk

https:/ /b-lukaszuk.github.io/R]_BS_eng/

Version: 2024-04-10

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://b-lukaszuk.github.io/RJ_BS_eng/

Contents

1 About

2 Why Julia

3

2.1
2.2
23
2.4
25

Juliaisfast
Juliaissimple L L L .
Pleasuretowrite
Not mainstream

Juliaisfree L

Julia - first encounter

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

Installation
Language Constructs
Variables
Functions
DecisionMaking
Repetition L.
Additional libraries oo o
Julia-Exercises,

Julia-Solutions

Statistics - introduction

4.1
4.2
43
44
4.5
4.6
4.7
4.8
49

Chapterimports
Probability - definition
Probability - properties L oL
Probability - theory and practice
Probability distribution 0L
Normal distribution
Hypothesistesting
Statistics intro- Exercises L.

Statistics intro-Solutions

ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Comparisons - continuous data

51 Chapterimports L
52 Onesample Student’'st-test
53 TwosamplesStudent’st-test
54 One-way ANOVA
55 Post-hoctests. o
5.6 Multiplicity correction 0L
5.7 Exercises - Comparisons of Continuous Data

5.8 Solutions - Comparisons of Continuous Data

Comparisons - categorical data

6.1 Chapterimports L
62 Flashback.
6.3 Chisquaredtest
6.4 Fisher'sexacttest
6.5 Biggertable L.
6.6 Testforindependence
6.7 Exercises - Comparisons of Categorical Data

6.8 Solutions - Comparisons of Categorical Data

Association and Prediction

71 Chapterimports oo
72 Linearrelation o .
73 Covariance e
74 Correlation L
7.5 Correlation Pitfalls
7.6 Simple Linear Regression
7.7 Multiple Linear Regression
7.8 Exercises - Association and Prediction

7.9 Solutions - Association

Time to say goodbye

107
107
108
116
123
131
135
138
142

161
161
161
163
168
170
172
174
177

195
195
195
197
200
203
209
216
222
229

245

1 About

Hi, I'm Bart and this is my first ‘experimental’ book entitled (for now):
“Romeo and Julia, where Romeo is Basic Statistics”

In this book I will explore some basic statistics (the way I see it) with Julial.
Actually, I wrote the book for myself from the past. Too bad the past me won't
be able to read it. Nevertheless, I hope it is gonna be of some value to some-
one that resembles me from the old days. Additionally, I wrote it to solidify
my own knowledge of statistics and Julia, after all they say we best teach that
of what we learn :) Still, the book may contain some errors so don’t believe
everything you read here.

Who am I (not)? I'm not a statistician, a mathematician, or a computer scien-
tist, but a biologist by education. Nowadays, I'm a programming enthusiast.
To be honest, statistics was not my favorite subject when I was at college. I
didn’t quite get it then, I got it somewhat better now. Hopefully this will make
the book easier to digest, although possibly somewhat biased towards biology.

Oh yeah, I almost forgot, I'm not an English native speaker (keep that in mind
while reading this book). Still, despite all the book’s (and mine) flaws, hope it
will be useful to someone (it is available under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International® license).

! https:/ /julialang.org/

2 http://creativccomm
ons.org/licenses/by-n
c-sa/4.0/

https://julialang.org/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

2 Why Julia

Before we jump into statistics I think we need to explain why should we use
lial and not Python? or R3 https:/ /julialang.org/

Julia® and not, e.g. Python® or R". 2 https://www.python

.org/

8 https:/ /www.r-project

veloped for statistical computing) or more popular (also in the field of Data .org/

In other words, am I mad to use Julia for statistics instead of R (a project de-

Science) Python?

Well, I hope that I'm just biased. I like Julia because:

it’s fast

it’s simple

it’s a pleasure to write programs with it
it’s a less mainstream language

SIS

it’s free and open source

2.1 Julia is fast

Once upon a time [wrote these three time consuming programs (so hold your
horses, you may not want to run them):

L

file: test.jl
for i in 1:1_000_000_000
if 1 == 500_000_000
println("Half way through. I counted to 500 million.")
end
end
println("Done. I counted to 1 billion.")

-

L

file: test.py
for i in range(1_-000_000_000):
if i == 500_000_000:
print("Half way through. I counted to 500 million.")
print("Done. I counted to 1 billion.")

-

file: test.r
for (i in 1:1000000000) {
if (i == 500000000) {

https://julialang.org/
https://www.python.org/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/

6 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

print("Half way through. I counted to 500 million.™")

}
}
print("Done. I counted to 1 billion.")

Note: Python and Julia allow to write numbers either like this: 1000, or like that
1_000. The latter form uses _ to separate thousands, so more typing, but it is more
legible.

Each program counts to 1 billion (1 with 9 zeros). Once it is half way through
it displays an info on the screen and when it is done counting it prints another
message.

The execution times of the scripts on my few-years old laptop (the specification
is not that important):

1. Julia: ~1.5 [sec]
2. R: ~33 [sec]
3. Python3: ~50 [sec]

Granted, it’s not a proper benchmark, and e.g. Python’s numpy* library runs * https://github.com/n
with the speed of C° (so a bit faster than Julia). Nevertheless, the code that umpy/numpy
% https:/ /en.wikipedia.o

. o . . . rg/wiki/C_(programm
other two programming languages. This is especially evident when running ing janguage)

I write in Julia is consistently ~5-10 times faster than the code I write in the

computer simulations like the ones you may find in this book, still, it is just a
subjective feeling.

Fun fact: A human being would likely need more than 32 years to count to 1
billion. Test yourself and show why. Hint: try to estimate for how long you are
alive [in seconds].

2.2 Julia is simple
What I mean by Julia’s simplicity is its nice, friendly and terse syntax.

For instance to write a simple Hello world® program all I have to do is to type: , https:/ /en.wikipedia.o

rg/wiki/%22Hello,_Wo

println("Hello World!") rld!%22_program

then save and run the file.

. . . 7) 7 https://en.wikipedia.o
For comparison a similar program in Java’ (a popular programming language) g /wiki/Java_(progra

looks something like: mming_language)

https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)

WHY JULIA 7

-

// file: HelloWorld. java
class HelloWorld {
public static void main(String args[]) {
System.out.println("Hello World");

For me too much boilerplate code. The code that I don’t want to type, read or
process in my head. Additionally, in general a Java’'s code will probably not
run faster than its Julia’s counterpart. Moreover, the difference in lengths may
be even greater for more complicated programs.

2.3 Pleasure to write
; ; ’ . 8 https://survey.stackov
According to this stack overflow’s survey8 Julia got one of the best loved/- erﬂopw. 0/2022 /#sectio

dreaded ratio among the examined programming languages. n-most-loved-dreaded
-and-wanted-program

ming-scripting-and-m

This is also true for me. Ilike writing programs in Julia (hopefully so will you). arkup-languages

2.4 Not mainstream

Not being ‘a mainstream programming language” got its drawbacks (missing

packages or community support, etc.). Luckily, Julia is big and mature enough,

; . Lo 1.9 ° https://forem julialan
it seems to be growing at a good pace, and got a pretty nice interoperability” . ;.. /ifihan/interoper
with other programming languages. ability-in-julia-1m26

Moreover, not being a mainstream language is like an opportunity, a gap to fill,
a venue to explore (hence this book).

2.5 Julia is free

Julia is a free and open source programming language as stated on its official ,, https:/ /julialang.org/

website!?:

Julia is an open source project with over 1,000 contributors. It is made available
under the MIT license. The source code is available on GitHub.

OK, enough preaching, time for our first date with Julia.

https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://julialang.org/

3 Julia - first encounter

Before we begin a warning. This book is not intended to be a comprehensive
introduction to Julia programming. If you are looking for one try, e.g. Think
]ulial. On the other hand, if the above-mentioned book is too much for you,
and all you want is a short introduction see learn Julia in Y minutes?. For a
video introduction try, e.g. A Gentle Introduction to Julia.

Still, regarding the current book, I think we need to cover some selected basics
of the language in order to use it later. The rest of it we will catch ‘on the fly’.
Without further ado let’s get our hands dirty.

3.1 Installation

In order to use Julia we need to install it first. So, now is the time to go to
julialang.org?, click ‘Download” and choose the version suitable for your ma-
chine’s OS.

To check the installation open the Terminal® and type:

{ julia --version

When I wrote those words the first time [used Julia version ~1.8, currently I'm
using:

{ VERSION J

1.10.2

running on a Gnu/Linux operating system. Keep that in mind, cause some-
times it may make a difference, e.g. reading the contents of a file (file path)
may be OS specific.

At the bottom of the Julia’s web page you will find “Editors and IDEs’ section
presenting the most popular editors that will enable you to effectively write
and execute pieces of Julia’s code.

For starters I would go with Visual Studio Code® a popular, user friendly code
editor for Julia. In the link above you will find the installation and configura-
tion instructions for the editor.

L https://benlauwens.g
ithub.io/Think]Julia.jl/1
atest/book.html
Zhttps://learnxinymin
utes.com/docs/julia/

3 https://www.youtub
e.com/watch?v=4igzy3
bGVkQ

4 https://julialang.org/

5 https://en.wikipedia.o
rg/wiki/Terminal_emu
lator

6 https://www julia-vsc
ode.org/docs/dev/getti
ngstarted /#Installatio
n-and-Configuration-1

https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://learnxinyminutes.com/docs/julia/
https://learnxinyminutes.com/docs/julia/
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://julialang.org/
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Terminal_emulator
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1

10 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

From now on you’ll be able to use it interactively (to run Julia code from this
book).

All You need to do is to create a file, e.g. chapter03. j1 (or open that file from the
. 7 7 https://github.com/b
code_snippets”), type the code presented in this chapter and run itby marking |,,.,..1/ RJ_BS_eng/

the code and pressing Ctrl+Enter. tree/main/code_snipp
ets/ch03

3.2 Language Constructs

Let’s start by looking at some language features, namely:

Variables
Functions
Decision making

L e

Repetition

3.3 Variables

The way I see it a variable is a box to store some value.

Type

x =1

mark it (highlight it with a mouse) and run by pressing ctrl+Enter.

This creates a variable (an imaginary box) named x (x is a label on the box)
that contains the value 1. The = operator assigns 1 (right side) to x (left side)
[puts 1 into the box].

Note: Spaces around mathematical operators like = are usually not necessary.
Still, they improve legibility of your code.

Now, somewhat below type and execute

X0 =02

Congratulations, now the value stored in the box (I mean variable x) is 2 (the
previous value is gone).

Sometimes (usually I do this inside of functions, see Section 3.4) you may see
variables written like that

https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03

JULIA - FIRST ENCOUNTER 11

E |

or

{zz::FloatM = 4.4 J

The :: is a type declaration. Here by using ::Int you promise Julia that you
8 https://en.wikipedia.o

will store only integers® (like: ..., -1, 0, 1, ...) in this box. Whereas by typing rg /wiki/Integer

9 (Milea- :
::Float64 you declare to place only floats” (like: ..., 1.1, 1.0, 0.0, 2.2, 3.14, ...) in 9 https:/ /en.wikipedia.o
that box. rg/wiki/Floating-point
_arithmetic

Note: You can either explicitly declare a type (with ::) or let Julia guess it (When
it’s not declared, like in the case of x above). In either situation you can check the
type of a variable with typeof function, e.g. typeof(x) or typeof(zz).

3.3.1 Optional type declaration

In Julia type declaration is optional. You don’t have to do this, Julia will figure
out the types anyway. Still, sometimes it is worth to declare them (explanation
in a moment). If you decide to do so, you should declare a variable’s type only
once (the time it is first created and initialized with a value).

If you use a variable without a type declaration then you can freely reassign to
it values of different types.

Note: In the code snippet below # and all the text to the right of it is a comment,
the part that is ignored by a computer but read by a human.

a = "Hello"

But you cannot assign (to a variable) a value of a different type than the one
you declared (you must keep your promises). Look at the code below.

This is OK
b::Int =1
b =2

But this is not OK (it’s wrong! it’s wroooong!)

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic

12 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

c::Int = 1 # type integer declared
c = 3.3 # broke the promise, float delivered, it will produce an error
c = 3.1 # again, broke the promise, float delivered, expect error

Now a question arises. Why would you want to use a type declaration (like
::Int Or ::Floate4) at all?

In general you put values into variables to use them later. Sometimes, you
forget what you placed there and may get an unexpected result (it may even
go unnoticed for some time). For instance it makes more sense to use integer
instead of string for some operations (e.g. I may wish to multiply 3 by 3 not
"three" by "three").

X =3

X *x X

x = "three"

X *x X

threethree

Note: Julia gives you a standard set of mathematical operators, like addition (+), 10 hitps: / /docs.julialang
subtraction (-), multiplication (), division (/) and more (see the docs10). .org/en/v1/base/math
/#math-ops

M https://docs.julialang
The latter is an example of a so called string concatenation!!, it may be useful -org/en/vl/manual/stri

#man- atenati
(as we will see later in this book), but probably it is not what you wanted. 2[‘?5/ fanreoncatenat

To avoid such unexpected events (especially if instead of + you use your own
function, see Section 3.4) you would like a guarding angel that watches over
you. This is what Julia does when you require it by using type declarations
(for now you need to take my word for it).

Moreover, declaring types sometimes may make your code run faster.
2 https:/ /en.wikipedia

Additionally, some IDEs!? work better (improved code completions, and hints) -0r&/wiki/Integrated d
evelopment_environme

when you place type declarations in your code. nt

Personally, I like to use type declarations in my own functions (see the upcoming
Section 3.4) to help me reason what they do. At first I write functions without types
at all (it's easier that way). Once I got them running I add the types to them (it us
useful for future reference, code maintenance, etc.).

https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

JULIA - FIRST ENCOUNTER 13

3.3.2 Meaningful variable names

Name your variables well. The variable names I used before are horrible (mea
culpa, mea culpa, mea maxima culpa). We use named variables (like x = 1) in-
stead of ‘loose’ variables (you can type 1 alone in a script file and execute that
line) to use them later.

You can use them later in time (reading and editing your code tomorrow or
next month/year) or in space (using it 30 or 300 lines below). If so, the names
need to be memorable (actually just meaningful will do :D). So whenever pos-
sible use: studentAge = 19, bookTitle = "Dune" (grammatical correctness is not
that important) instead of x = 19, y = "Dune".

You may want to check Julia’s Docs for the allowed variable names'® and their
recommended stylistic conventions!# (for now, always start with a small letter,
and use alphanumeric characters from the Latin alphabet). Personally, I prefer
to use camelCaseStyle!® so this is what you're gonna see here.

3.3.3 Floats comparisons

Be careful with = sign. In mathematics = means equal to and # means not equal
— to. In programming = is usually an assignment operator (see Section 3.3
before). If you want to compare for equality you should use == (for equal to)
and (!= for not equal to), examples:

= |

true

= |

false

o |

true
1.0 1
1.0 !'=1
false
2 2.0

B https://docs julialang
.org/en/vl/manual/va
riables/#man-allowed
-variable-names

4 https://docs.julialang
.org/en/vl/manual/va
riables /#Stylistic-Conve
ntions

15 https:/ /en.wikipedia
.org/wiki/Camel_case

https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

14 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

true

Be careful though because the comparisons of two floats are sometimes tricky,
e.g.

(6.1 * 3) == 0.3

false

The problem here is not Julia (go ahead, try (6.1 * 3) == 0.3 in another pro-
gramming language), but computers in general. The result is false since float

numbers cannot be represented exactly in binary (for technical details see this ,
https://stackoverflo
StackOverflow’s thread!®). This is how my computer sees 0.1 = 3 w.com/questions /8604

196/why-0-1-3-0-3

[0.1 * 3

0.30000000000000004

and 0.3

o

0.3

The same caution applies to other comparison operators, like:

e x > y (xis greater than y),

e x >= y (xis greater than or equal to y),
e x <y (xislessthany),

e x <= y (xisless than or equal to y).

We will see how to deal with the lack of precision in comparisons later (see Section 3.8.2).

7 https://docs.julialang
.org/en/vl/manual/ty
3.3.4 Other types pes/
B https://en.wikipedia
.org/wiki/Floating-poi
nt_arithmetic
mentioned in this chapter, i.e.: 19 https:/ /en.wikipedia
.org/wiki/Integer

There are also other types (see Julia’s Docs!”), but we will use mostly those

2 https:/ /en.wikipedia
floats!8 .org/wiki/Strin)gf(co
. 19 mputer_science
integers
) 8 20 A https://en.wikipedia
strings .org/wiki/Boolean_da

booleans?! ta_type

https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/types/
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean_data_type

JULIA - FIRST ENCOUNTER 15

The briefly aforementioned strings contain text of any kind. They are denoted
by (optional type declaration) ::string and you type them within double quo-
tation marks ("any text"). If you ever want to place " in a string you need to use
\ (backslash) before it [otherwise Julia will terminate the string on the second
" it encounters and throw an error (because it will be confused by the remain-
ing, stray, characters)]. Moreover, if you wish the text to be displayed in the
next line (e.g. in a figure’s title like the one in Section 4.7.3) you should place
\n in it. For instance:

title = "I enjoy reading\n\"Title of my favorite book\"."
println(title)

Displays:

I enjoy reading
"Title of my favorite book".

on the screen.

A string is composed of individual characters (d’ooh!). An individual char-

acter (type ::char) is enclosed between single quotation marks, e.g. 'a', 'b’,

'c', ..., 'z' (also uppercase) are individual characters. So whenever you want

to type a single character you got a choice, either use 'a' (single char) or "a"

(string composed of one char). But when typing two or more characters that

are ‘glued’ together you must use double quotations ("ab"). In the rest of the

book we will focus mostly on strings, still, a bit more knowledge never hurt

anyone (or did it?). In Solution to exercise 5 from Section 5.8.5, we will see

how to easily generate a complete alphabet (or a part of it, if you ever need 2 https://docs julialang
one) with chars. If you want to know more about the Strings?> and Chars?® -org/en/vl/manual/stri
ngs/#man-characters

just click the links to the docs that are to be found in this sentence. https://docs julialang

.org/en/vl /manual/stri
The last of the earlier referenced types (boolean) is denoted as ::Bool and can ngs/#man-characters

take only two values: true or false (see the results of the comparison opera-
tions above in Section 3.3.3). Bools are often used in decision making in our
programs (see the upcoming Section 3.5) and can be used with a small set of 2 https://docs julialang

logical operators®* like AND (&) ;E!l e‘rt‘l/L ‘a}/o ‘Bgi‘;‘tll); T/a

) #Boolean-Operators

true && true

https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators

16 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

true

OR (1)

false || false

L

false

and NOT (1)

Ifalse

true

3.3.5 Collections

Not only do variables may store a single value but they can also store their col-
lections. The collection types that we will discuss here are vector (technically
Vector is a one dimensional Array but don’t worry about that now), Array and

struct (it is more like a composite type, but again at that moment we will not
be bothered by that fact).

3.3.6 Vectors

myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

[3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

Here I declared a variable that stores my mock grades.

The variable type is vector of numbers (each of type Float64, run typeof (myMathGrades
<) to check it). I could have declared its type explicitly as ::Vvector{Float64}. “https://en.wikipedia

.org/wiki/Rectangular_
Instead I decided to let Julia figure it out. cuboid '

% https://en.wikipedia
You can think of a vector as a rectangular cuboid®® box with drawers (smaller -org/wiki/Cube

https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Cube

JULIA - FIRST ENCOUNTER 17

cube?® shaped boxes). The drawers are labeled with consecutive numbers (in-
dices) starting at 1 (we will get to that in a moment). The variable contains 7
grades in it, which you can check by typing and executing length(myMathGrades).

You can retrieve a single element of the vector by typing myMathGrades[i] where
i is some integer (the aforementioned index). For instance:

myMathGrades[3] 3

3.5

or

myMathGrades[end]

3.0

Be careful though, if You type a non-existing index like myMathGrades[-1], myMathGrades
%[0]ormyMathGrades[io]youwillgetanerror (e.g. BoundsError: attempt to access
<~ 7-element Vector{Float64} at index [0]).

You can get a slice (a part) of the vector by typing

myMathGrades[[2, 5]] 2 5

[3.0, 4.0]

or

myMathGrades[[2, 3, 4]] 2 3 4

[3.0, 3.5, 2.0]

or simply

myMathGrades[2:4] 2 5 4

7 https://docs.julialang
[3.0, 3.5, 2.0] .org/en/v1/base/math
/#Base.range

B https://docs.julialang
The 2:4 is Julia’s range?” generator, with default syntax start:stop (both of -org/en/vl/base/collec
tions/#Base.collect-Tup
le%7BType, %20Any%7
it by using collect®® function, e.g, just run collect(2:4)). So, it gives us the D

which are inclusive). Assume that under the hood it generates a vector (check

https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D

18 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

same result as writing myMathGrades[[2, 3, 4]] by hand. However, the range
syntax is more convenient (less typing especially for broad ranges). Now, let’s
say I want to print every other grade out of 100 grades, then I can go with
oneHunderedGrades[1:2:end] and voila, a magic happened thanks to the start:step
> :stop syntax (collect(1:2:end) returns a vector of indices like [1, 3, 5, 7, ...,
— 97, 99]).

One last remark, You can change the elements that are in the vector like this.

myMathGrades[1] = 2.0
myMathGrades

[2.0, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

or like that

myMathGrades[2:3] = [5.0, 5.0]
myMathGrades

[2.0, 5.0, 5.0, 2.0, 4.0, 5.0, 3.0]

Again, remember about proper indexing. What you put inside (right side)
should be compatible with indexing (left side), e.g myMathGrades[2:3] = [2.0,
—2.0, 2.0] will produce an error (placing 3 numbers to 2 slots).

3.3.7 Arrays

A vector is actually a special case of an Array, a multidimensional structure that
holds data. The most familiar (and useful) form of it is a two-dimensional
Array (also called matrix). It has rows and columns. Previously I stored my
math grades in a vector, but most likely I would like a place to keep my other
grades. Here, I create an array that stores my grades from math (columnl)
and chemistry (column?2).

myGrades = [3.5 3.0; 4.0 3.0; 5.0 2.0]
myGrades

3x2 Matrix{Float64}:
Hold o

4.0 3.0

5.0 2.0

I separated the values between columns with a space character and indicated
anew row with a semicolon. Typing it by hand is not very interesting, but they
come in handy as we will see later in the book.

JULIA - FIRST ENCOUNTER 19

As with vectors I can use indexing to get specific element(s) from a matrix, e.g.

myGrades[[1, 3], 2]

1 3

[3.0, 2.0]

or

myGrades[:, 2]

[3.0, 3.0, 2.0]

Above, the : symbol means all indices in a row.

myGrades[1, :]

[3.5, 3.0]

By analogy, the : symbol means all indices in a column.

myGrades[3, 2]

2.0

I can also use the indexing to replace a particular element in a Matrix. For in-
stance.

myGrades[3, 2] = 5
myGrades

3x2 Matrix{Float64}:
3.5 3.0
4.0 3.0
5.0 5.0

or

myGrades[1:2, 1] = [5, 5]
myGrades

3x2 Matrix{Float64}:
5.0 3.0
5.0 3.0
5.0 5.0

20 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

As with a vector also here you must pay attention to proper indexing.

When dealing with Arrays (or vectors which are one dimensional arrays) one
needs to be cautious not to change their contents accidentally.

In case of atomic variables the values are assigned /passed as copies (i.e. a new
number 3 is put to the box, the old number in the variable x is unaffected).
Observe.

Note: The (x, y) returns Tuple (see Tuple in the docszg) and it is there to show #https://docs julialang
.org/en/vl/manual/fu

both x and y in one line. You may think of Tuple as something similar to Vector ;
nctions/#Tuples

but written with parenthesis () instead of square brackets []. Additionally, you
cannot modify elements of a tuple after it was created (so, if you gotz = (1, 2,
<3), then z[2] will work fine (since it just returns an element), but z[2] = 8 will
produce an error). Technically speaking, you could just type x, y and run the
line to get a tuple (test it out), but I prefer to use parenthesis to be explicit.

However, the arrays are assigned/passed as references.

xx = [2, 2]

yy = xx

yy[1] = 3 3
(xx5 yy)

([3, 21, [3, 2])

As stated in the comments to the code snippet above, here both xx and yy vari-
ables point on (reference to) the same box of drawers. So, when we change a
value in one drawer, then both variables reflect the change. If we want to avoid

that we can, e.g. make a copy®” of the vector/array like so: ¥ https://docs.julialang
.org/en/vl/base/base
xx = [2, 2] /#Base.copy

yy = copy(xx)
yy[1] = 3

https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/base/base/#Base.copy
https://docs.julialang.org/en/v1/base/base/#Base.copy
https://docs.julialang.org/en/v1/base/base/#Base.copy

JULIA - FIRST ENCOUNTER 21

(xx, yy)

([2, 21, [3, 2])

3.3.8 Structs

31 https://docs.julialang
Another Julia’s type worth mentioning is struct®!. It is a composite type (so it -/(:g/ en/v1/base/base
struct
contains other type(s) inside). :

Let’s say I want to have a thing that resembles fractions that we know from
mathematics. It should allow to store the data for numerator and denominator

numerator s
(m) Let S use struct for that

-

struct Fraction
numerator::Int
denominator:: Int
end

frl = Fraction(1, 2)
fri

L

Fraction(1, 2)

Note: Structs’ names are usually defined with a capital letter.

If I ever wanted to get a component of the struct I can use the dot syntax, like
SO

fri.numerator

Note: If you type fri. and press TAB key then you should see a hint with the
available field names. You may choose one with arrow keys and confirm it with
Enter key.

or

% https://docs.julialang

£r1.denominator .org/en/v]/bése/numb
ers/#Base.Rational

https://docs.julialang.org/en/v1/base/base/#struct
https://docs.julialang.org/en/v1/base/base/#struct
https://docs.julialang.org/en/v1/base/base/#struct
https://docs.julialang.org/en/v1/base/numbers/#Base.Rational
https://docs.julialang.org/en/v1/base/numbers/#Base.Rational
https://docs.julialang.org/en/v1/base/numbers/#Base.Rational

22 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

2

Of course, as you probably have guessed, there is no need to define your own

132

type for fraction since Julia is already equipped with one. It is Rational®>~. For

convenience the fraction is written as

1//2 1, 2

1//2
Notice the double slash character (//).

In general, structs are worth knowing. A lot of libraries (see Section 3.7) define
their own struct objects and we may want to extract their content using the dot
syntax (as we probably sometimes will in the upcoming sections).

OK, enough about the variables, time to meet functions.

3.4 Functions

Functions are doers, i.e encapsulated pieces of code that do things for us. Op-

timally, a function should be single minded, i.e. doing one thing only and do-
® https://en.wikipedia

ing it well. Moreover since they do stuff their names should contain verbs®? org/wiki/Verb

(whereas variables’ names should be composed of nouns®*). % hitps:/ /en.wikipedia

.org/wiki/Noun

We already met one of many Julia’s built in functions, namely printin (see Sec-

tion 2.2). As the name suggests it prints something (like a text) to the standard
35 ® https://en.wikipedia

output : .org/wiki/Standard_str

eams#Standard_output

_(stdout)

3.4.1 Mathematical functions

We can also define some functions on our own:

function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real
return lenSideA x lenSideB
end

getRectangleArea (generic function with 1 method)

% https://en.wikiped
%Beéfg /awiki /Function
< and it calculates (surprise, surprise) the area of a rectangle®’. _(mathematics)

% https:/ /en.wikipedia

To do that I used a keyword function. The function keyword is followed by the -org/wiki/Rectanglefifo
rmulae

Here I declared Julia’s version of a mathematical function®. Itis called getRectan

name of the function (getRectangleaArea). Inside the parenthesis are arguments

https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Rectangle#Formulae
https://en.wikipedia.org/wiki/Rectangle#Formulae
https://en.wikipedia.org/wiki/Rectangle#Formulae

JULIA - FIRST ENCOUNTER 23

of the function. The function accepts two arguments lensidea (length of one
side) and lenside (length of the other side) and calculates the area of a rect-
angle (by multiplying 1lenSideA by lensideB). Both lenSideA and lensides are of
type Real. It is Julia’s representation of a real number®, it encompasses (it’s
kind of a supertype), among others, Int and Floaté4 that we encountered be-
fore. The ending of the first line,) ::Real, signifies that the function will return
a value of type real. The stuff that function returns is preceded by the return
keyword. The function ends with the end keyword.

Note: A Julia’s function does not need the return keyword since it returns the
result of its last expression. Still, I prefer to be explicit.

Time to run our function and see how it works.

{getRectangleArea(B, 4) J
12
{getRectangleArea(l.S, 2) }
3.0

Note: In some other languages, e.g. Python, you could use the function like:

% https:/ /en.wikipedia
.org/wiki/Real_number

getRectangleArea(3, 4),getRectangleArea(lenSideA=3, lenSideB=4) or getRectangleArea

< (lenSideB=4, lensideA=3). However, for performance reasons (and perhaps
due to its Lisp heritage) Julia’s functions accept arguments in a positional manner
(although Julia has keyword arguments39). Therefore, here you may only use
getRectangleArea(3, 4) form. Internally, the first argument (3) will be assigned
to the local variable lenSideA and the second (4) to the local variable lenSideB
inside the getRectangleArea function.

Hmm, OK, I got getRectangleArea and what if I need to calculate the area of a
square. You got it.

function getSquareArea(lenSideA::Real)::Real
return getRectangleArea(lenSideA, lenSideA)
end

getSquareArea (generic function with 1 method)

Note: The argument (lenSideA) of getSquareArea is only known inside the func-
tion. Another function can use the same name for its arguments and it will not
collide with this one. For instance, getRectangleArea(lenSideA::Real, lenSideB
— ::Real) will receive the same number twice, which getSquareArea knows as
lensideA, but getRectangleArea will see only the numbers (it will receive their
copies) and it will name them lenSideA and lenSideB for its own usage.

¥ https://docs julialang
.org/en/vl/manual/fu
nctions/#Keyword-Arg
uments

4 https:/ /en.wikipedia
.org/wiki/Square#Per
imeter_and_area

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://en.wikipedia.org/wiki/Square#Perimeter_and_area
https://en.wikipedia.org/wiki/Square#Perimeter_and_area
https://en.wikipedia.org/wiki/Square#Perimeter_and_area

24 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Here I can either write its body from scratch (return lendSideA * lenSideA) or
reuse (as I did) our previously defined getRectangleArea. Lesson to be learned
here, functions can use other functions. This is especially handy if those inner
functions are long and complicated. Anyway, let’s see how it works.

getSquareArea(3)

9
Appears to be working just fine.

A quick reference to the topic we discussed in Section 3.3.1. Here typing getRectangleArea
< ("three", "three") will produce an error. Now, I can spot it right away, read the
error’s message and based on that correct my code so the result is in line with my
expectations

3.4.2 Functions with generics

Now, let’s say I want a function getFirstelt that accepts a vector and returns its
first element (vectors and indexing were briefly discussed in Section 3.3.5).

function getFirstElt(vect::Vector{Int})::Int
return vect[1]
end

It looks OK (test it, e.g. getFirstelt([1, 2, 3]). However, the problem is that it
works only with integers (or maybe not, test it out). How to make it work with
any type, like getFirstElt(["Eve", "Tom", "Alex"]) Or getFirstElt([1.1, 2.2, 3.3])
—7?

One way is to declare separate versions of the function for different types of
inputs, i.e.

-

function getFirstElt(vect::Vector{Int})::Int
return vect[1]
end

function getFirstElt(vect::Vector{Float64})::Float64
return vect[1]
end

function getFirstElt(vect::Vector{String})::String
return vect[1]
end

L

JULIA - FIRST ENCOUNTER 25

getFirstElt (generic function with 3 methods)

Note: The function’s name is exactly the same in each case. Julia will choose the
correct version (aka method, see the output of the code snippet above) based on
the type of the argument (vect) send to the function, e.g. getFirstElt([1, 2, 3])
—, getFirstElt([1.1, 2, 3.0]), and getFirstElt(["a", "b", "c"]) for the three
versions above, respectively.

But that is too much typing (I retyped a few times virtually the same code).
The other way is to use no type declarations.

function getFirstEltVer2(vect)
return vect[1]

end

It turns out that you don't have to declare function types in Julia (just like in
the case of variables, see Section 3.3.1) and a function may work just fine.

Still, a die hard ‘typist’ (if I may call a person this way) would probably use so
called generic types, like

function getFirstEltVer3(vect::Vector{T})::T where T
return vect[1]

end

Here we said that the vector is composed of elements of type T (vector{T}) and
that the function will return type 1 (see)::T). By typing where T we let Julia
know that 1 is our custom type that we just made up and it can be any Julia’s
built in type whatsoever (but what it is exactly will be determined once the
function is used). We needed to say where T otherwise Julia would throw an
error (since it wouldn't be able to find its own built in type 7). Anyway, we
could replace T with any other letter (or e.g. two letters) of the alphabet (4, b,
or whatever) and the code would still work.

One last remark, it is customary to write generic types with a single capital
letter. Notice that in comparison to the function with no type declarations
(getFirstEltver2) the version with generics (getFirstEltver3) is more informa-
tive. You know that the function accepts a vector of some elements, and you
know that it returns a value of the same type as the elements that build that
vector.

Of course, that last function we wrote for fun (it was fun for me, how about
you?). In reality Julia already got a function with a similar functionality (see
Base.first*!).

4 https://docs.julialang
.org/en/vl/base/collec
tions/#Base.first

https://docs.julialang.org/en/v1/base/collections/#Base.first
https://docs.julialang.org/en/v1/base/collections/#Base.first
https://docs.julialang.org/en/v1/base/collections/#Base.first

26 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Note: Functions from Base package, like Base.first mentioned above may be
used in a shorter form (without the prefix) like this: first([1, 2, 3, 4]).

Anyway, as I wrote before if you don’t want to use types then don't, Julia gives

you a choice. When I begun to write my first computer programs, I preferred

to use programming languages that didn’t require types. However, nowadays
I prefer to use them for the reasons similar to those described in Section 3.3.1
so0 be tolerant and bear with me.

3.4.3 Functions operating on structs

Functions may also work on custom types like the ones created with struct. Do

you still remember our Fraction type from Section 3.3.8? I hope so.

Let’s say I want to define a function that adds two fractions. I can proceed like

SO

function add(f1::Fraction, f2::Fraction)::Fraction

newDenom:: Int
fiNewNom:: Int
f2NewNom:: Int
newNom:: Int =

end

f1.denominator * f2.denominator
newDenom / fi1.denominator % fil.numerator
newDenom / f2.denominator % f2.numerator

fiNewNom + f2NewNom
return Fraction(newNom, newDenom)

add(Fraction(1, 3), Fraction(2, 6))

Fraction(12, 18)

Note: The variables newDenom, fiNewNom, f2NewNom, newNom are local, e.g. they are
created and exist only inside the function when it is called (like here with add(
—rFraction(1, 3), Fraction(2, 6))) and do not affect the variables outside the
function even if they happened to have the same names.

Works correctly, but the addition algorithm is not optimal (for now you don't

have to worry too much about the function’s hairy internals). Luckily the built

in Rational type (Section 3.3.8) is more polished. Observe

1//3 + 2//6

1, 3 2, 6

2//3

Much better (12 =

multiplication and division work for Rational.

%ﬁg = 2). Of course also other operations like subtraction,

JULIA - FIRST ENCOUNTER 27

We will meet some functions operating on structs when we use custom made
libraries (e.g. Htests.pvalue that works on the object (struct) returned by Htests
< .0OnellayANOVATest in the upcoming Section 5.5). Again, for now don’t worry
about it too much.

3.4.4 Functions modifying arquments

Previously (see Section 3.3.5) we said that we can change elements of a vec-
tor. Sometimes even unintentionally, because, e.g. we may forget that Arrays
<—s/Vectors are assigned /passed by references (as mentioned in Section 3.3.7).

~

function wrongReplaceFirstELlt(
ints::Vector{Int}, newElt::Int)::Vector{Int}
ints[1] = newElt
return ints

end

xx = [2, 2]
yy = wrongReplaceFirstElt(xx, 3)

(xx, yy)

([3, 21, [3, 2])

Let’s try to re-write the function that changes the first element improving upon
it at the same time.

function replaceFirstElt!(vect::Vector{T}, newElt::T) where T
vect[1] = newElt
return nothing

end

Note: The function’s name ends with ! (exclamation mark). This is one of the
Julia’s conventions to mark a function that modifies its arguments.

In general, you should try to write a function that does not modify its argu-
ments (as modification often causes errors, especially in big programs). How-
ever, such modifications are sometimes useful, therefore Julia allows you to do
so, but you should always be explicit about it. That is why it is customary to
end the name of such a function with ! (exclamation mark draws attention).

Additionally, observe that T can be of any type, but we require newelt to be of the
same type as the elements in vect. Moreover, since we modify the arguments

28 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

we wrote return nothing (to be explicit we do not return a thing) and removed
returned type after the function’s name, i.e. we used [) where T instead of) ::
—Vector{T} where T].

Let’s see how the function works.

X = [1) 2, 3]
y = replaceFirstElt!(x, 4)
(x5 y)

([4, 2, 3], nothing)

Let me finish this subsection by mentioning a classical example of a built-in

. e . . 4 “2 https://docs.julialang
function that modifies its argument. The function is push!®**. It adds elements :

.org/en/vl/base/collec

to a collection (e.g. Arrays, or vectors). Observe: tions/#Base.push!
xx = []

push!(xx, 1, 2) 1, 2

push!(xx, 3) 1, 2, 3

push!(xx, 4, 5) 1, 2, 3, 4, 5

I mentioned it since that was my favorite way of constructing a vector (to start
with an empty vector and add elements one by one with a for loop that we will
meet in Section 3.6.1) back in the day when I started my programming journey.
Nowadays I do it a bit differently, but I thought it would be good to mention it
in case you find it useful while solving some exercises from this book.

3.4.5 Side Effects vs Returned Values

Notice that so far we encountered two types of Julia’s functions:

e those that are used for their side effects (like printin)
e those that return some results (like getRectangleArea)

The difference between the two may not be clear while we use the interactive
mode. To make it more obvious let’s put them in the script like so:

-

file: sideEffsVsReturnvals.jl

you should define a function before you call it

function getRectangleArea(lenSideA::Number, lenSideB::Number) ::Number
return lenSideA x lenSideB

end

https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!

JULIA - FIRST ENCOUNTER 29

println("Hello World!")

getRectangleArea(3, 2) # calling the function

After running the code from terminal:

cd folder_with_the_sideEffsVsReturnvals. jl
julia sideEffsVsReturnVals. jl

I got printed on the screen:

Hello World!

That’s it. I got only one line of output, the rectangle area seems to be missing.
We must remember that a computer does only what we tell it to do, nothing
more, nothing less. Here we said:
https:/ /en.wikipedia

43 .org/wiki/Standard_str
e print “Hello World!” to the screen (actually standard output™) eams#Standard_output

e calculate and return the area of the rectangle (but we did nothing with it) - (stdout)

In the second case the result went into the void (“If a tree falls in a forest and
no one is around to hear it, does it make a sound?”).

If we want to print both pieces of information on the screen we should modify
our script to look like:

s N

file: sideEffsVsReturnVals.jl

you should define a function before you call it

function getRectangleArea(lenSideA::Number, lenSideB::Number) :: Number
return lenSideA % lenSideB

end

println("Hello World!")

println takes 0 or more arguments (separated by commas)
if necessary arguments are converted to strings and printed
println("Rectangle area = ", getRectangleArea(3, 2), "[cm*2]")

L J

Now when we run julia sideEffsVsReturnvals. jl from terminal, we get:

Hello World! “ https://docs.julialang
.org/en/vl/manual/fu

Rectangle area = 6 [cmA2] nctions,

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://docs.julialang.org/en/v1/manual/functions/
https://docs.julialang.org/en/v1/manual/functions/
https://docs.julialang.org/en/v1/manual/functions/

30 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

More information about functions can be found, e.g. in this section of Julia’s
Docs*.

If You ever encounter a built in function that you don’t know, you may always
% https://docs.julialang

search for it in the docs®® (search box: top left corner of the page). org/en/v1/

3.5 Decision Making

In everyday life people have to make decisions and so do computer programs.
This is the job for if ... elseif ... else constructs.

3.51 If...orElse...

To demonstrate decision making in action let’s say I want to write a function
that accepts an integer as an argument and returns its textual representation.
Here we go.

function turnInt2string(num::Int)::String
if num ==
return "zero"
elseif num ==

return "one
elseif num ==
return "two"
else
return "three or above"
end

end

(turnInt2string(2), turnInt2string(5))

L

("two", "three or above")

The general structure of the construct goes like this:

-

pseudocode, don't run this snippet

if (condition_that_returns_Bool)
what_to_do

elseif (another_condition_that_returns_Bool)
what_to_do

elseif (another_condition_that_returns_Bool)
what_to_do

else
what_to_do

end

https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/

JULIA - FIRST ENCOUNTER

As mentioned in Section 3.3.4 Bool type can take one of two values true or false.
The code inside if/elseif clause runs only when the condition is true. You can
have any number of elseif clauses. Only the code for the first true clause runs.
If none of the previous conditions matches (each and every one is false) the
code in the else block is executed. Only if and end keywords are obligatory, the
rest is not, so you may use

pseudocode, don't run this snippet

if (condition_that_returns_Bool)
what_to_do

end

or

pseudocode, don't run this snippet

if (condition_that_returns_Bool)
what_to_do

else
what_to_do

end

L J

or

pseudocode, don't run this snippet

if (condition_that_returns_Bool)
what_to_do

elseif (condition_that_returns_Bool)
what_to_do

else
what_to_do

end

L J

or

pseudocode, don't run this snippet

if (condition_that_returns_Bool)
what_to_do

elseif (condition_that_returns_Bool)
what_to_do

elseif (condition_that_returns_Bool)
what_to_do

else
what_to_do

end

L J

or ..., never mind, I think you got the point.

32 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Below I place another example of a function using if/elseif/else construct (in
order to remember it better).

function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
if isSortedAsc
return vect[1]
else
sortedVect::Vector{Int} = sort(vect)
return sortedVect[1]
end
end

x
|

= [11 2, 3, 4]
Y= [31 4, 1, 2]

(getMin(x, true), getMin(y, false))

(1, 1)

Here I wrote a function that finds the minimal value in a vector of integers.

If the vector is sorted in the ascending order it returns the first element. If it ,, httos: o
ttps://docs.julialang

is not, it sorts the vector using the built in sort® function and returns its first .org/en/v1/base/sort/#

element (this may not be the most efficient method but it works). Note that the else Base-sort

block contains two lines of code (it could contain more if necessary, and so

could if block). I did this for demonstrative purposes. Alternatively instead

those two lines (in the else block) one could write return sort(vect)[1] and it

would work just fine.

3.56.2 Ternary expression

If you need only a single if ... else in your code, then you may prefer to re-
place it with ternary operator. Its general form is condition_or_Bool ? result_if_true
— : result_if_false.

Let me rewrite getMin from Section 3.5.1 using ternary expression.

function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
return isSortedAsc ? vect[1] : sort(vect)[1]
end

x
|

= [11 2, 3, 4]
y 8 [3) 4, 1, 2]

(getMin(x, true), getMin(y, false))

L

https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort

JULIA - FIRST ENCOUNTER 33

(1, 1)

Much less code, works the same. Still, I would not overuse it. For more than
a single condition it is usually harder to write, read, and process in your head
than the gOOd old if/elseif/else block.

3.5.3 Dictionaries

4 https://docs.julialang
Dictionaries in Julia*’ are a sort of mapping. Just like an ordinary dictionary is org/en/v1/base/collec

amapping between a word and its definition. Here, we say that the mappingis fions/#Dictionaries
between key and vatue. For instance let’s say I want to define an English-Polish
dictionary.

engPolDict::Dict{String, String} = Dict("one" => "jeden", "two" => "dwa")
engPolDict

Dict{String, String} with 2 entries:
Iltwo" => lldwa"

one" => "jeden"

Here I defined a dictionary of type bict{string, String}, so, both key and value
— are of textual type (string). The order of the keys is not preserved (this
data structure cares more about lookup performance and not about the order
of the keys). Therefore, you may see a different order of items after executing
the code on your computer.

If we want to now how to say “two” in Polish I type apict[key] (if the key is not
there you will get an error), e.g.

engPolDict["two"]

dwa

To add a new value to a dictionary (or to update the existing value) write
abict[key] = newval. Right now the key “three” does not exist in engPolDict so I
would get an error (check it out), but if I type:

engPolDict["three"] = "trzy"

trzy # https://docs.julialang
.org/en/v1/base/collec
Then I create (or update if it was already there) a key-value mapping. tions/#Base.get

https://docs.julialang.org/en/v1/base/collections/#Dictionaries
https://docs.julialang.org/en/v1/base/collections/#Dictionaries
https://docs.julialang.org/en/v1/base/collections/#Dictionaries
https://docs.julialang.org/en/v1/base/collections/#Base.get
https://docs.julialang.org/en/v1/base/collections/#Base.get
https://docs.julialang.org/en/v1/base/collections/#Base.get

34 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Now, to avoid getting errors due to non-existing keys I can use the built in get*3

function. You use it in the form get(collection, key, default), e.g. right now the
word “four” (key) is not in a dictionary so I should get an error (check it out).
But wait, there is get.

get(engPolDict, "four", "not found")

not found

OK, what anything of it got to do with if/elseif/else and decision making.
The thing is that if you got a lot of decisions to make then probably you will
be better off with a dictionary. Compare

function translEng2polVeri(engWord::String)::String
if engWord == "one"
return "jeden"
elseif engWord == "two"
return "dwa"
elseif engWord == "three"
return "trzy"
elseif engWord == "four"
return "cztery"
else
return "not found"
end
end

(translEng2polVer1("three"), translEng2polVeri("ten"))

("trzy", "not found")

with

function translEng2polVer2(engWord::String,
aDict::Dict{String, String} = engPolDict)::String
return get(aDict, engWord, "not found")
end

(translEng2polVer2("three"), translEng2polVer2("twelve"))

("trzy", "not found")

Note: Dictionaries like Arrays (see Section 3.3.7) are passed by references # hitps://docs julialang

.org/en/vl/manual/fu
nctions/#Optional-Arg
In trans1Eng2polver2 I used a so called optional argument49 for abict (aDict::Dict uments

https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments

JULIA - FIRST ENCOUNTER 35

—{string, String} = engPoldict). This means that if the function is provided
without the second argument then engpolbict will be used as its second ar-
gument. If I defined the function as translEng2polVer2(engWord::String, aDict::
<—Dict{String, String}) then while running the function I would have to write
(translEng2polVer2("three", engPolDict), translEng2polVer2("twelve", engPolDict)).
Of course, I may prefer to use some other English-Polish dictionary (perhaps
the one found on the internet) like so trans1Eng2polver2("three", betterEngPolDict
<) instead of using the default engPoldict we got here.

In general, the more if ... elseif ... else comparisons you got to do the better off
you are when you use dictionaries (especially that they could be written by someone
else, you just use them). Still, in the rest of the book we will probably use dictionaries
for data storage and a quick lookup.

OK, enough of that. If you want to know more about conditional evaluation https:/ /docs fulial
- ps: ocs.julialang

. . 50
check this part of Julia’s docs”". org/en/v1/manual/co
ntrol-flow /#man-condi
tional-evaluation

3.6 Repetition

Julia, and computers in general, are good at doing boring, repetitive tasks for
us without a word of complaint (and they do it much faster than we do). Let’s
see some constructs that help us with it.

3.6.1 For loops

S https://en.wikipedia
A for loop®! is a standard construct present in many programming languages -0rs/wiki/For_loop
that does the repetition for us. Its general form in Julia is:

pseudocode, do not run this snippet
for i in sequence

do_something_useful
end

The loop is enclosed between for and end keywords and repeats some spe-
cific action(s) (# do_something_useful) for every element of a sequence. On each
turnover of a loop consecutive elements of a sequence are referred to by i.

Note: I could have assigned any name, like: j, k, whatever, it would work the > httpsf/ / en.wikipedia
same. Still, i and j are quite common in for loops®2. -org/wiki/For_loop
% https://en.wikipedia
, 53 . .org/wiki/Hip_hip_ho
Let’s say I want a program that will print hip hip hooray~” many times for my ¢

friend that celebrates some success. I can proceed like this.

https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Hip_hip_hooray
https://en.wikipedia.org/wiki/Hip_hip_hooray
https://en.wikipedia.org/wiki/Hip_hip_hooray

36 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

function printHoorayNtimes(n::Int)
@assert (n > 0) "n needs to be greater than 0"
for _ in 1:n
println("hip hip hooray!")
end
return nothing
end

Go ahead, run it (e.g. printHoorayNtimes(3)).

Notice two new elements. Here it makes no sense for n to be less than or equal

5 https://docs.julialang
. . o .org/en/vl/base/base
("n needs to be greater than 0") if it is. The 1:n is a range similar to the one we 4Basc @assert

used in Section 3.3.6. Here, I used _ instead of i in the example above (to signal

to 0. Hence, T used @assert® construct to test it and print an error message

that I don't plan to use it further).

OK, how about another example. You remember myMathGrades, right?

myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

Now, since the end of the school year is coming then I would like to know my
average® (likely this will be my final grade). In order to get that I need to % https://en.wikipedia

.org/wiki/Arithmetic

divide the sum by the number of grades. First the sum. e

function getSum(nums::Vector{<:Real})::Real
total::Real = 0
for i in 1:length(nums)
total = total + nums[i]
end
return total
end

getSum(myMathGrades)

24.0
A few explanations regarding the new bits of code here.

In the arguments list I wrote ::vector{<:Real}. Which means that each element
of nums is a subtype (<:) of the type rReal (which includes integers and floats).
I declared a total and initialized it to 0. Then in for loop [used i to hold num-
bers from 1 to number of elements in the vector (length(nums)). Finally, in the
for loop body I added each number from the vector (using indexing see Sec-
tion 3.3.6) to the total. The total = total + nums[i] means that new total is equal
to old total + element of the vector (nums) with index i (nums[i]). Finally, I re-
turned the total.

https://docs.julialang.org/en/v1/base/base/#Base.@assert
https://docs.julialang.org/en/v1/base/base/#Base.@assert
https://docs.julialang.org/en/v1/base/base/#Base.@assert
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean

JULIA - FIRST ENCOUNTER 37

The body of the for loop could be improved. Instead of for i in 1:length(nums)
I could have written for i in eachindex(nums) (notice there is no 1:, eachindex is
% https://docs.julialang
.org/en/vl/base/arrays
1] I could have used total += nums[i]. The += is and update operator57, i.e. a /#Base.eachindex

; ; : https://docs julialang
shortcut for updating old value by adding a new value to it. Take a moment

.org/en/vl/manual/ma

thematical—operations/
#Updating-operators

a built in Julia function, see here56). Moreover, instead of total = total + nums[

to rewrite the function with those new forms and test it.

Note: The update operator must be written as accumulator += updateValue (e.g. total
— += 2) and not accumulator =+ updateValue (e.g. total =+ 2). In the latter case
Julia will asign updateValue (+2) as a new value of accumulator [it will interpret

=+ 2 as assign (=) plus/positive two (+2) instead of update (+=) by 2].

Alternatively, I can do this without indexing (although for loops with indexing
are a classical idiom in programming and it is worth to know them).

function getSum(nums::Vector{<:Real})::Real
total::Real = 0
for num in nums
total += num
end
return total
end

getSum(myMathGrades)

L J

24.0

Here num (I could have used n, i or whatever if I wanted to) takes the value of
each consecutive element of nums and adds it to the total.

OK, and now back to the average58.

% https://en.wikipedia

function getAvg(nums::Vector{<:Real})::Real .org/wiki/Arithmetic
return getSum(nums) / length(nums) —mean

end

getAvg(myMathGrades)

3.4285714285714284

Ups, not quite 3.5, I'll better present some additional projects to improve my
final grade.

OK, two more examples that might be useful and will help you master for
loops even better.

Let’s say I got a vector of temperatures in Celsius®® and want to send it to a » https://en.wikipedia
friend in the US. .org/wiki/Celsius

https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Celsius

38 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

temperaturesCelsius = [22, 18.3, 20.1, 19.5]

[22.0, 18.3, 20.1, 19.5]

5 https://en.wikipediz
To make it easier for him I should probably change it to Fahrenheit®® using this D pee

.org/wiki/Fahrenheit
formula®!. I start with writing a simple converting function for a single value & https://en.wikipedia
of the temperature in Celsius scale. .org/wiki/Fahrenheit#C

onversion_(specific_t
function degCels2degFahr (tempCels::Real)::Real emperature_point)
return tempCels * 1.8 + 32
end
degCels2degFahr(0)
32.0

Now let’s convert the temperatures in the vector. First I would try something
like this:

function degCels2degFahr!(tempsCels::Vector{<:Real})
for i in eachindex(tempsCels)
tempsCels[i] = degCels2degFahr (tempsCels[i])
end
return nothing

end

82 https://docs.julialang
+ .org/en/vl/manual/st

yle-guide/#bang-conve
Still, this is not good. If I use it (degCels2degFahr! (temperatureCelsius)) it will ntion

change the values in temperaturesCelsius to Fahrenheit which could cause prob-
lems (variable name doesn’t reflect its contents). A better approach is to write
a function that produces a new vector and doesn’t change the old one.

Notice the ! in the function name (don’t remember what it mean? see here®?)

function degCels2degFahr (tempsCels::Vector{<:Real})::Vector{<:Real}
result::Vector{<:Real} = zeros(length(tempsCels))
for i in eachindex(tempsCels)
result[i] = degCels2degFahr(tempsCels[i])
end
return result
end

degCels2degFahr (generic function with 2 methods)

Now I can use it like that:

https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention

JULIA - FIRST ENCOUNTER 39

temperaturesFahrenheit = degCels2degFahr(temperaturesCelsius)

[71.6, 64.94, 68.18, 67.1]

First of all, notice that so far I defined two functions named degCels2degFahr.
One of them has got a single value as an argument (degCels2degFahr (tempCels ::
—Real)) and another a vector as its argument (degCels2degFahr (tempsCels:: Vector
—{<:Real})). But since I explicitly declared argument types, Julia will know
when to use each version based on the function’s arguments (see next para-
graph). The different function versions are called methods (hence the mes-
sage: degCels2degFahr (generic function with 2 methods) under the code snippet
above).

In the body of degCels2degFahr (tempsCels::Vector{<:Real}) first I declare and ini-

tialize a variable that will hold the result (hence result). I do this using built

8 https://docs.julialang
.org/en/vl/base/arrays
n is equal to length(tempscels)) filled with, you got it, Os. The Os are just place- /#Base.zeros

in zeros®? function. The function returns a new vector with n elements (where

holders. Then, in the for loop, I go through all the indices of result (i holds

the current index) and replace each zero (result[i]) with a corresponding

value in Fahrenheit (degCels2degFahr (tempsCels[i])). Here, since I pass a single

value (tempscels[i]) Julia knows which version (aka method) of the function

degCels2degFahr to use (i.e. this one degCels2degFahr (tempCels::Real)).

® https://en.wikibooks
.org/wiki/Introducing_

over every call in an array (we met arrays in Section 3.3.7). We will use nested Julia/Controlling the_fl
ow#Nested_loops

For loops can be nested® (even a few times). This is useful, e.g. when iterating

loops later in the book (e.g. in Section 6.8.2).

OK, enough for the classic for loops. Let’s go to some built in goodies that
could help us out with repetition.

3.6.2 Built-in Goodies

If the operation you want to perform is simple enough you may prefer to use
some of the Julia’s goodies mentioned below.

3.6.3 Comprehensions

65 . < uli .
Another useful constructs are comprehensions®. hitps://docs,julialang
.org/en/vl/manual/ar

rays/#man-comprehen
Let’s say this time I want to convert inches to centimeters using this function. sions

function inch2cm(inch::Real)::Real
return inch * 2.54

https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions

40 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

end

inch2cm(1)

2.54

If I want to do it for a bunch of values I can use comprehensions like so.

-

inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
return [inch2cm(inch) for inch in inches]
end

inches2cms (inches)

L

[25.4, 50.8, 76.2]

On the right I use the familiar for loop syntax, i.e. for sth in collection. On the
left I place a function (named or anonymous®®) thatTwant to use (here inch2cm)
and pass consecutive elements (sth, here inch) to that function. The expression
is surrounded with square brackets so that Julia makes a new vector out of it
(the old vector is not changed).

In general comprehensions are pretty useful, chances are that I'm going to use them a
lot in this book so make sure to learn them (e.g. read their description in the link at the
beginning of this subchapter, i.e. Section 3.6.3 or look at the examples shown here®”).

3.6.4 Map and Foreach

Comprehensions are nice, but some people find map®® even better. The exam-
ple above could be rewritten as:

inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
return map(inch2cm, inches)
end

inches2cms (inches)

L

[25.4, 50.8, 76.2]

Again, I pass a function (note I typed only its name) as a first argument to map,
the second argument is a collection. Map automatically applies the function to
every element of the collection and returns a new collection. Isn't this magic.

8 https://docs julialang
.org/en/vl/manual/fu
nctions/#man-anony
mous-functions

7 https:/ /en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Comprehensions

8 https://docs julialang
.org/en/vl/base/collec
tions/#Base.map

https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://docs.julialang.org/en/v1/base/collections/#Base.map
https://docs.julialang.org/en/v1/base/collections/#Base.map
https://docs.julialang.org/en/v1/base/collections/#Base.map

JULIA - FIRST ENCOUNTER 41

If you want to evoke a function on a vector just for side effects (since you don’t
need to build a vector and return it) use foreach®. For instance, getsun with
foreach and an anonymous function would look like this

L

function getSum(vect::Vector{<:Real})::Real
total::Real = 0
foreach(x -> total += x, vect)
return total

end

getSum([1, 2, 3, 4])

10

Here, foreach will perform an action (its first argument) on each element of its
second argument (vect). The first argument (x -> total += x) is an anonymous
function’? that takes some value x and in its body (-> points at the body) adds
x to total (total += x). The x takes each value of vect (second argument).

Note: Anonymous functions will be used quite a bit in this book, so make sure
you understand them (read their description in the link above or look at the ex-
amples shown here”1).

3.6.5 Dot operators/functions

Last but not least. I can use a dot operator’?. Say I got a vector of numbers and
I want to add 10 to each of them. Doing this for a single number is simple, I
would have just typed 1 + 16. Hmm, but for a vector? Simple as well. I just
need to precede the operator with a . like so:

[1, 2, 3] .+ 10

[11, 12, 13]

I can do this also for functions (both built-in and written by myself). Notice .
goes before (

L

inches = [10, 20, 30]
function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
return inch2cm. (inches)

end

inches2cms (inches)

% https://docs.julialang
.org/en/v1/base/collec
tions/#Base.foreach

" https://docs.julialang
.org/en/vl/manual/fu
nctions/#man-anony
mous-functions

"I https://en.wikibooks
.org/wiki/Introducing_
Julia/Functions#Anon
ymous_functions

2 https://docs.julialang
.org/en/vl /manual/ma
thematical-operations/
#man-dot-operators

https://docs.julialang.org/en/v1/base/collections/#Base.foreach
https://docs.julialang.org/en/v1/base/collections/#Base.foreach
https://docs.julialang.org/en/v1/base/collections/#Base.foreach
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators

42 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

[25.4, 50.8, 76.2]

Isn’t this nice.

OK, the goodies are great, but require some time to get used to them (I suspect
at first you're gonna use good old for loop syntax). Besides the constructs
described in this section are good for simple operations (don't try to put too
much stuff into them, they are supposed to be one liners).

In any case choose a construct that you know how to use and that gets the job
done for you, mastering them all will take some time.

Still, in general dot operations are pretty useful, chances are that I'm going to use them
a lot in this book so make sure to understand them.

3.7 Additional libraries

OK, there is one more thing I want to briefly talk about, and it is libraries”3

(sometimes called packages).

A library is a piece of code developed by someone else. At the time I'm writing
these words there are over 9°000 libraries (aka packages) in Julia (see here”*)
75 (alot

of them are) then basically you may use it freely, but without any warranty.

available under different licenses. If the package is under MIT license

To install a package you use Pkg’®, i.e. Julia’s built in package manager. Click
the link in the previous sentence to see how to do it (be aware that installation
may take some time).

In general there are two ways to use a package in your project:

1. by typing using Some_pkg_name
2. by typing import Some_pkg_name

Personally, I prefer the latter. Actually, I use it in the form import Some_pkg_name
< as Abbreviated_pkg_name (you will see why in a moment).

Let’s see how it works. Remember the getsum and getAvg functions that we wrote
ourselves. Well, it turns out Julia got a built-in sum’” and Statistics”® package
gota mean”” function. To use it I type at the top of my file (it is a good practice
to do so):

import Statistics as Stats

7 https://en.wikipedia
.org/wiki/Library_(co
mputing)

™ https:/ /julialang.org/
packages/

7 https://en.wikipedia
.org/wiki/MIT_License

7 https://docs julialang
.org/en/v1/stdlib/Pkg/

7 https://docs.julialang
.org/en/vl/base/collec
tions/#Base.sum

7 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/

7 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/#Statistics.mean

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://julialang.org/packages/
https://julialang.org/packages/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean

JULIA - FIRST ENCOUNTER 43

Now I can access any of its functions by preceding them with stats (my abbre-
viation) and . like so

Stats.mean([1, 2, 3])

2.0
And that’s it. It just works.

Note that if you type import Statistics instead of import Statistics as Stats then
in order to use mean you will have to type statistics.mean([1, 2, 3]). So in gen-
eral it is a good idea to give some shorter name for an imported package.

Oh yeah, one more thing. In order to know what are the functions in a library
and how to use them you should check the library’s documentation.

OK, enough theory, time for some practice.

3.8 Julia - Exercises

I once heard that in chess you can get only as much as you give. I believe it is
also true for programming (and most likely many other human activities).

So, here are some exercises that you may want to solve to get from this chapter
as much as you can.

Note: Some readers probably will not solve the exercises. They will not want to
(because of the waste of time) or will not be able to solve them (in that case my
apology for the inappropriate difficulty level). Either way, I suggest you read
the tasks” descriptions and the solutions (and try to understand them). In those
sections I may use, e.g. some language constructs that I will not explain again in
the upcoming chapters.

3.8.1 Exercise 1

Imagine the following situation. You and your friends make a call to order out
a pizza. You got only $50 and you are pretty hungry. But you got a dilemma,
for exactly $50 you can either order 2 pizzas 30 cm in diameter each, or 1 pizza
45 cm in diameter. Which one is more worth it?

Hint: Assume that the pizza is flat and that you are eating its surface.

8 https://docs.julialang

Hint: You may want to search the documentation® for pase.mathconstants and use org/en/vl/

one of them.

https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/

44 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

3.8.2 Exercise 2

When we talked about float comparisons (Section 3.3.3) we said to be careful
since

(0.1 % 3) == 0.3

false

Write a function with the following signature areApproxEqual(f1::Float64, f2::

<+Float64) :: Bool. It should return true when called with those numbers (areApprmé{Equal
81 . . L , https://docs.juliala
—(0.1x3, 0.3)). For the task you may use round®" with a precision of, let’s say, ng.org/en/v1/base/ma
16 digits. th/#Base.round-Tuple
007BCOmp1€X0/()7BU()3CC
AbstractFloat%7D, %20

Note: Probably there is no point of greater precision than 16 digits since your ~ RoundingMode %20Ro

dingMode%7D
machine won't be able to see it anyway. For technical details see Base.epssz. nemgRode
8 https://docs.juliala
ng.org/en/vl/base/
base/#Base.eps-Tup

. 10007BTYPCU()7BO/()3CZ
3.8.3 Exercise 3 AbstractFloat%7D%7D

Remember getmin from previous chapter (see Section 3.5.2)

function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
return isSortedAsc ? vect[1] : sort(vect)[1]
end

Write getMax with the following signature getMax(vect ::Vector{Int}, isSortedDesc
< ::Bool) :: Int use only the elements from previous version of the function
(you should modify them).

3.8.4 Exercise 4

Someone once told me that the simplest interview question for a candidate s 5./ /en.wikipedia
programmer is fizz buzz®3. If a person doesn’t know how to do that there is -org/wiki/Fizz_buzz
no point of examining them further.

I don’t know if that’s true, but here we go.
Write a program for a range of numbers 1 to 30.
e If a number is divisible by 3 print “Fizz” on the screen.

e If a number is divisible by 5 print “Buzz” on the screen.
e If a number is divisible by 3 and 5 print “Fizz Buzz” on the screen.

https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://en.wikipedia.org/wiki/Fizz_buzz
https://en.wikipedia.org/wiki/Fizz_buzz

JULIA - FIRST ENCOUNTER 45

e Otherwise print the number itself.

If you feel stuck right now, don’t worry. It sounds difficult, because so far you
haven’t met all the necessary elements to solve it. Still, I believe you can do this
by reading the Julia’s docs or using your favorite web search engine.

Here are some constructs that might be useful to solve this task:

e for loop (see Section 3.6.1)
e if/elseif/else (see Section 3.5.1)

e modulo operator or rem function®

e ‘logical and’ (see Section 3.3.4 and this®> and that®® section of Julia’s docs)

e string function®”

You may use some or all of them. Or perhaps you can come up with something
else. Good luck.

3.8.5 Exercise 5

I once heard a story about chess.

According to the story the game was created by a Hindu wise man. He pre-
sented the invention to his king who was so impressed that he offered to fulfill
his request as a reward.

e [want nothing but some wheat grains.

e How many?

e Put 1 grain on the first chess field, 2 grains on the second, 4 on the third, 8
on the fourth, and so on. I want the grains that are on the last field.

A laughingly small request, thought the king. Or is it?

Use Julia to answer how many grains are on the last (64th) field.

Hint. If you get a strange looking result, use BigInt3® data type instead of Int®.

3.8.6 Exercise 6

Lastly, to cool down a little write a function getInit that takes a vector of any
type as an argument and returns the vector without its last element.

You may either use the generics (preferred way to solve it, see Section 3.4.2)
or write the function without type declarations (acceptable solution).

8 https://docs julialang
.org/en/v1/base/math

/#Base.rem

8 https://docs.julialang
.org/en/vl/manual/mi
ssing/#Logical-operato
s

8 https://docs.julialang
.org/en/vl /manual/mi
ssing/#Control-Flow-a

nd-Short-Circuiting-O

perators

8 https://docs.julialang
.org/en/vl /base/string
s/#Base.string

8 https://docs.julialang
.org/en/vl/base/numb
ers/#BigFloats-and-Big
Ints

8 https://docs.julialang
.org/en/vl /manual/in
tegers-and-floating-poi
nt-numbers/#Integers

https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers

46 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Remember about the indexing (see Section 3.3.6). Think (or search for the
answer e.g. in the internet) how to get one but last element of an array.

Usage examples:

getInit([1, 2, 3, 4])
output: [1, 2, 3]

L

getlnit(["ab", "cd"’ Ilef"! "ghll])
output: ["ab", "cd", "ef"]

L

getInit([3.3])
output: Float64[]

L

getInit([])
output: Any[]

L

3.9 Julia - Solutions

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

3.9.1 Solution to Exercise 1

Since I'm eating a surface, and the task description gives me diameters, then I
should probably calculate area of a circle®®. Twill use Base.MathConstants.pi®!
in my calculations.

function getCircleArea(r::Real)::Real
return pi * r x 1
end

(getCircleArea(30/2) = 2, getCircleArea(45/2))

(1413.7166941154069, 1590.431280879833)

It seems that I will get more food while ordering this one pizza (45 cm in di-
ameter) and not those two pizzas (each 30 cm in diameter).

% https://en.wikipedia
.org/wiki/Area_of_a_ci
rcle
 https://docs.julialang
.org/en/vl/base/numb
ers/#Base.MathConsta
nts.pi

https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Area_of_a_circle
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi

JULIA - FIRST ENCOUNTER 47

Note: Instead of pi = v = r I could have used r*2, where * is an exponentiation
operator in Julia. If I want to raise 2 to the fourth power I can either type 244 or
2x2x2x2 and get 16.

% https:/ /en.wikipedi
If all the pizzas were cylinders®? of equal heights (say 2 cm or an inch each) org /P;;]/q/fgy‘ﬁ;;};e “

then I would calculate their volumes like so

function getCylinderVolume(r::Real, h::Real=2)::Real

return getCircleArea(r) = h
end

(getCylinderVolume(30/2) * 2, getCylinderVolume(45/2))

(2827.4333882308138, 3180.862561759666)

Gtill, the conclusion is the same.

3.9.2 Solution to Exercise 2

My solution to that problem would look something like

function areApproxEqual(fl::Float64, f2::Float64)::Bool
return round(f1, digits=16) == round(f2, digits=16)
end

Let’s put it to the test

areApproxEqual(0.1%3, 0.3)

true

. . . . Tgin 93 *https://docs.julialang
Seems to be working fine. Still, you may prefer to use Julia’s built-in isapprox”. org/en/v1/base/math

/#Base.isapprox
For example.

isapprox(0.1%3, 0.3)

0.11+3, 0.3

0.11+3, 0.3

https://en.wikipedia.org/wiki/Cylinder
https://en.wikipedia.org/wiki/Cylinder
https://docs.julialang.org/en/v1/base/math/#Base.isapprox
https://docs.julialang.org/en/v1/base/math/#Base.isapprox
https://docs.julialang.org/en/v1/base/math/#Base.isapprox

48 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

true

Lesson to be learned here. If you want to do something you can:

1. look for a function in the language documentation
2. look for a function in some library

3. write a function yourself by using what you already got at your disposal

3.9.3 Solution to Exercise 3

Possible solution

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
return isSortedDesc ? vect[1] : sort(vect)[end]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)
or if you read the documentation for sort>* * https://docs julialang
.org/en/vl/baso/sort/#
function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int Base.sort

return isSortedDesc ? vect[1] : sort(vect, rev=true)[1]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)

Sorting an array to get the maximum (or minimum) value is not the most ef-
fective method (sorting is based on rearranging elements and takes quite some
time). Traveling through an array only once should be faster. Therefore prob-
ably a better solution (in terms of performance) would be something like

function getMaxUnsorted(unsortedVect::Vector{Int})::Int
maxVal::Int = unsortedVect[1]
for elt in unsortedVect[2:end]
if maxval < elt
maxVal = elt
end
end
return maxval
end

https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort

JULIA - FIRST ENCOUNTER 49

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
return isSortedDesc ? vect[1] : getMaxUnsorted(vect)

end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)

Read it carefully and try to figure out how it works.

Note: Julia already got similar functionality to getMin, getMax that we developed

ourselves. See min®® , max%, minimum97, and maximum?8.

3.9.4 Solution to Exercise 4

Perhaps the most direct version of the program would be

function printFizzBuzz()
for i in 1:30
15 0
if rem(i, 3) == 0 && rem(i, 5) ==
println("Fizz Buzz")
elseif rem(i, 3) == 0
println("Fizz")
elseif rem(i, 5) == 0
println("Buzz")
else
println(i)
end
end
return nothing
end

Note: Julia applies operators based on precedence and associativity?”. If you are
unsure about the order of their evaluation check the docs or use parenthesis ()
to enforce the desired order of evaluation.

Go ahead, test it out.

If you like challenges try to follow the execution of the following program.

function getFizzBuzz(num::Int)::String
return (
rem(num, 15) == 0 ? "Fizz Buzz" :

rem(num, 3) == 0 ? "Fizz" :

% https://docs julialang
.org/en/v1/base/math
/#Base.min

% https://docs.julialang
.org/en/v1/base/math
/#Base.max

7 https:/ /docs julialang
.org/en/vl/base/collec
tions/#Base.minimum
% https://docs.julialang
.org/en/v1/base/collec
tions/#Base.maximum

https://docs.julialang
.org/en/vl /manual/ma
thematical-operations/
#Operator-Precedenc
e-and-Associativity

https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity

50 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

rem(num, 5) == 0 ? "Buzz" :
string(num)

)

end

function printFizzBuzz()
foreach(x -> println(getFizzBuzz(x)), 1:30)
return nothing

end

There are probably other more creative [or more (unnecessarily) convoluted]
ways to solve this task. Personally, I would be satisfied if you understand the
first version.

3.9.5 Solution to Exercise 5

For more information about the legend see this Wikipedia’s article!?.

If you want some more detailed mathematical explanation you can read that

Wikipedia’s article!0T.

The Wikipedia's version of the legend differs slightly from mine, butIlike mine
better.

Anyway let’s jump right into some looping.

L

function getNumOfGrainsOnField64()::Int
noOfGrains::Int = 1 1
for _ in 2:64
noOfGrains *= 2
end
return noOfGrains
end

getNumOfGrainsOnField64 ()

-9223372036854775808
Hmm, that’s odd, a negative number.

Wait a moment. Now I remember, a computer got finite amount of memory.
So in order to work efficiently data is stored in small pre-allocated pieces of
it. If the number you put into that small ‘memory drawer’ is greater than the
amount of space then you get strange results (imagine that a number sticks

10 https:/ /en.wikipedia
.org/wiki/Sissa_(myth
ical_brahmin)

08 https:/ /en.wikipedia
.org/wiki/Wheat_and_
chessboard_problem

https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

JULIA - FIRST ENCOUNTER 51

out of the drawer but Julia looks only at the part inside the drawer, hence the
strange result).

If you are interested in technical stuff then you can read more about it in Julia’s

102 103).

docs (sections Integers'< and Overflow Behavior

You can check the minimum and maximum value for int by typing typemin
< (Int) and typemax(Int) on my laptop those are -9223372036854775808 and
9223372036854775807, respectively.

The broad range of int is enough for most calculations, still if you expect a
really big number you should use BigInt'% (sigint calculations are slower than
the ones for 1nt, but now you should be only limited by the amount of memory
on your computer).

So let me correct the code.

function getNumOfGrainsOnField64()::Bigint
noOfGrains::BigInt = 1 1
for _ in 2:64
noOfGrains = 2
end
return noOfGrains
end

getNumOfGrainsOnField64 ()

s)

L J

9223372036854775808

Whoa, that number got like 19 digits. I don’t even know how to name it. It
cannot be that big, can it?

OK, quick verification with some mathematical calculation (don’t remember
»? See Section 3.9.1).

(Biglnt(Z)"GS 2 by 2 by 2 2

64 |

9223372036854775808

Yep, the numbers appear to be the same.

[getNumOfGrainsOnFieldM() == BigInt(2)*63 J

true

102 https://docs.juliala
ng.org/en/vl /manual/
integers-and-floating-p
oint-numbers/#Integers
108 https://docs.juliala
ng.org/en/vl/manual/
integers-and-floating-p
oint-numbers/#Overfl
ow-behavior

104 https://docs juliala
ng.org/en/vl/base/nu
mbers/#BigFloats-and
-Biglnts

105 https:/ /en.wikipedia

105 5 right, it takes much g /wiki/Wheat_and_

So I guess the aforementioned Wikipedia’s article

more grain than a country (or the world) could produce in a year. chessboard_problem

https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

52 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

3.9.6 Solution to Exercise 6

A possible solution with generics looks something like that

function getInit(vect::Vector{T})::Vector{T} where T
return vect[1:(end-1)]
end

getInit (generic function with 1 method)

The parenthesis around end-1 are not necessary. I added them for better clarity
of how the last by one index is calculated.

Tests:

getInit([1, 2, 3, 4]) ’

[1, 2, 3]

getInit(["ab", "Cd“, "ef", nghu])

["ab", "Cd", "ef"]

getInit([3.3]) ’

Float64[]

getInit([]) ’

BTW. Try to remove type declarations and see if the function still works (if you
do this right then it should).

OK, that’s it for now. Let’s move to another chapter.

4 Statistics - introduction

OK, once we got some Julia basics under our belts, it is time to get familiar with
statistics.

First of all, what is statistics anyway?

Hmm, actually I have never tried to learn the definition by heart (after all get-
ting such a question during an exam is slim to none). Still, if I were to give a
short (2-3 sentences) definition without looking it up I would say something
like that.

Statistics is a set of methods for drawing conclusions about big things (popu-
lations) based on small things (samples). A statistician observes only a small
part of a bigger picture and makes generalization about what he does not see
based on what he saw. Given that he saw only a part of the picture he can
never be entirely sure of his conclusions.

OK, feel free to visit Wikipedia (see statistics') and see how I did with my
definition. The definition given there is probably more accurate and compre-
hensive than the one given above, but maybe mine will be easier to grasp for
a beginner.

Anyway, my definition says “can never be entirely sure” so there needs to be
some way to measure the (un)certainty. This is where probability comes into
the picture. We will explore this concept in more than a few next pages.

4.1 Chapter imports

Later in this chapter we are going to use the following libraries

import CairoMakie as Cmk
import Distributions as Dsts
import Random as Rand

If you want to follow along you should have them installed on your system. A
reminder of how to deal (install and such) with packages can be found here?.
But wait, you may prefer to use Project.tonl and Manifest.toml files from the
code snippets for this chapter? to install the required packages. The instruc-
tions you will find here®.

! https://en.wikipedia.o
rg/wiki/Statistics

Zhttps://docs.julialang
.org/en/v1/stdlib/Pkg/
3 https://github.com/b

-lukaszuk/RJ_BS_eng/

tree/main/code_snipp

ets/ch04

* https://pkgdocs.julial
ang.org/vl/environme
nts/

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistics
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/

54 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

The imports will be placed in the code snippet when first used, but I thought
itis a good idea to put them here, after all imports should be at the top of your
file (so here they are at the top of the chapter). Moreover, that way they will
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from
the . j1 file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

4.2 Probability - definition

To me probability is one of the key concepts in statistics, after all any statisti-
cal software will gladly calculate the famous p-value (a form of probability)
for you. Still, let’s get back to our probability definition (see the sub-chapter
name).

As said, at the conclusion of the previous section (Section 4), probability is a
way to measure certainty. It’s like with the grades in school. In Poland a pupil
can score 1to 6 (lowest to highest grade) and this tells us how well he mastered
the subject. If I score 1 then I didn’t master it at all, but when I get 6 this means
that I got it all. We know from everyday life that probability takes values from
0to 100%, e.g.

e Are you sure of it?
e Absolutely, one hundred percent.

or

e Do you think he can make it?
e I would say it’s fifty-fifty.

or even

e What are the chances?
e Pretty much, zero.

When something is bound to happen we assign it the probability of 100%.

When it can go either way we say fifty-fifty (50% it will happen, 50% it will not
happen).

When an event is impossible we say zero (probability of it happening is 0%).

STATISTICS - INTRODUCTION 55

And this is the way statisticians use it. OK, maybe not quite. A typical statistics
textbook will say that the probability takes values from 0 to 1. It is expressed
this way for a few particular reasons (some of the reasons may be given later).
Moreover, believe it or not, but it is actually compatible with our understand-
ing that is based on everyday life.

: s . s 5 % https:/ /en.wikipedia.o
From primary school (see also Wikipedia’s definition of percentage”) I remem- rg/wiki/Percentage

ber that 1% is actually 1/100th of something which I can write down using
proper fraction as 145 or a decimal as 0.01.

Therefore any probability value from 0% to 100% can be written in these few
forms. For instance:

e 0% =2 =000=0

100
o 1% = 145 = 0.01
o 5% = 125 =0.05
e 10% = 4% =0.10=0.1
e 20% = £ =0.20=0.2
o 50% = 3% =0.50 = 0.5
e 100% = 153 =1.00 =1

To give you a better intuitive grasp of probability written as a decimal take a
look at this simplistic graphical depiction of it

prob = 0.0

impossible |[[[[[IT/TITEITEECTELIEEETEELEEEEEEETEELTEEETETTTEN] certain
A

prob = 0.2

impossible | [[{ITILELEEETETEEECERECETEEEEEEEPEEEEEEEEVETTTETT] certain

A
prob = 0.5
impossible |[[[[[ITITITECTEECTELEEECTEELEEEEEEETEELTEETTETTTET] certain
A
prob = 0.8
impossible | [[{ITTLEEEEETTTEEECERELETEEEEEREPEEEEEEEEVETTTET] certain
A
prob = 1.0
ampossible ||| 1TTTEEDE D DCEEEETEETTETTT L] certain
A

6 https:/ /en.wikipedia.o
Anyway, when written down as a decimal (like a statistician would do it) the rg/wiki/Software_calcu

probability is easier to type with a keyboard and a software calculator®. Addi- 2"
tionally, now we will be able to perform some simple but useful calculations
with those numbers (see the upcoming sections).

https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Software_calculator
https://en.wikipedia.org/wiki/Software_calculator
https://en.wikipedia.org/wiki/Software_calculator

56 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4.3 Probability - properties

One of the cool and practical stuff that I learned about probability is that it can
be:

added
subtracted

multiplied

divided (not discussed in this section)

How about I illustrate that with a simple example.

From biology classes I remember that the genetic material (DNA”) of a cell is
in its nucleus. It is organized in a set of chromosomes. Chromosomes come

in pairs (twin or homologous chromosomes®

, we get one from each of our
parents). Each chromosome contains genes (like beads on a thread). Since we
got a pair of chromosomes, then each chromosome from a pair contains a copy
of the same gene(s). The copies are exactly the same or are different versions
of a gene (we call them alleles”). In order to create gametes (like the egg cell
and sperm cells) the parents’ cells undergo division (meiosis'?). During this
process a cell splits in two and each of the child cells gets one chromosome

from the pair.

For instance chromosome 9 contains the genes that determine our ABO blood
group system!!. A meiosis process for a person with blood group AB would
look something like this (for simplicity I drew only twin chromosomes 9 and
only genes for ABO blood group system).

OK let’s see how the mathematical properties of probability named at the be-
ginning of this sub-chapter apply here.

But first, a warm-up (or a reminder if you will). In the previous part (see
Section 4.2) we said that probability may be seen as a percentage, decimal or
fraction. I think that the last one will be particularly useful to broaden our un-
derstanding of the concept. To determine probability of an event in the numer-
ator (top) we insert the number of times that a particular event may happen,
in the denominator (bottom) we place the number of all possible events, like
so:

num times this event may happen
num times any event may happen

Let’s test this in practice with a few short Q&As (there may be some repeti-
tions, but they are on purpose).

7 https:/ /en.wikipedia.o
rg/wiki/DNA

8 https://en.wikipedia.o
rg/wiki/Homologous_c
hromosome

9 https://en.wikipedia.o
rg/wiki/Allele

O https://en.wikipedia
.org/wiki/Meiosis

" https://en.wikipedia
.org/wiki/ABO_blood_
group_system#Genetics

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Allele
https://en.wikipedia.org/wiki/Allele
https://en.wikipedia.org/wiki/Meiosis
https://en.wikipedia.org/wiki/Meiosis
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics

STATISTICS - INTRODUCTION 57

Figure 4.1: Meiosis.
p a re n t C e Splitting of a cell of

a person with blood
group AB.

H H

gametes

58 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Q1. In the case illustrated in Figure 4.1 what is the probability of getting a ga-
mete with allele c [for short I'll name it P(c)] from a person with blood group
AB?

Al. Since we can only get allele 4 or 8, but no ¢ then P(C) = § = 0 (it is an

impossible event).

Q2. In the case illustrated in Figure 4.1 what is the probability of getting a
gamete with allele A [for short I'll name it P(A)] from a person with blood
group AB?

A2. Since we can get only allele A or 8 then Ais 1 of 2 possible events, so 1 = 0.5.

It seems that to answer this question we just had to divide the counts of the
events satisfying our requirements by the counts of all events.

Note: This is exactly the same probability (since it relies on the same reasoning)
as for getting a gamete with allele 8 (1 of 2 or = 0.5)

Q3. In the case illustrated in Figure 4.1, what is the probability of getting a
gamete with allele A or B [for short I'll name it P(a or 8)] from a person with
blood group AB?

A3. Since we can only get allele A or B then A or B are 2 events (1 event when A
happens + 1 event when 8 happens) of 2 possible events, so

P(AOTB):%:%:L

It seems that to answer this question we just had to add the counts of the both
events.

Let’s look at it from a slightly different perspective.

Do you remember that in A2 we stated that the probability of getting gamete
ais 1 and the probability of getting gamete & is +? And do you remember that
in primary school we learned that fractions can be added one to another? Let’s
see will that do us any good here.

P(AorB)=P(A)+P(B)=1+1=2=1

Interesting, the answer (and calculations) are (virtually) the same despite a
slightly different reasoning. So it seems that in this case the probabilities can
be added.

STATISTICS - INTRODUCTION 59

Q4. In the case illustrated in Figure 4.1, what is the probability of getting a
gamete with allele B (for short I'll name it P(8)) from a person with blood
group AB?

A4. I know, we already answered it in A2. But let’s do something wild and
use a slightly different reasoning.

Getting gamete A or B are two incidents of two possible events (2 of 2). If we
subtract event A (that we are not interested in) from both the events we get:

P =25~}

It seems that to answer this question we just had to subtract the count of the
events we are not interested in from the counts of the both events.

Let’s see if this works with fractions (aka probabilities).

P(B)=P(Aor B)— P(A) =

eI}

1
2

N~

Yep, a success indeed.

Q5. Look at Figure 4.2.

Here we see that a person with blood group AB got children with a person with
blood group O (ii - recessive homo-zygote). The two possible blood groups in
children are A (Ai - hetero-zygote) and B (Bi - hetero-zygote).

And now, the question. In the case illustrated in Figure 4.2, what is the prob-
ability that a child (row C) of those parents (row P) will produce a gamete
with allele A (row CG)?

A5. One way to answer this question would be to calculate the gametes in the
last row (CG). We got 4 gametes in total (4, i, 8, i) only one of which fulfills
the criteria (gamete with allele A). Therefore, the probability is

P(Ain CG) =1 =0.25 and that’s it.

Another way to think about this problem is the following. In order for a child
to produce a gamete with allele A it had to get it first from the parent. So what
we are looking for is:

1. what proportion of children got allele A from their parents (here, half of
them)

60 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 4.2: Blood
groups, gametes. P -
parents, PG - parents’
gametes, C - children,
CG - children’s’” ga-
metes.

STATISTICS - INTRODUCTION 61

2. in the children with allele A in their genotype, what proportion of gametes
contains allele A (here, half of the gametes)

So, in order to get the half of the half we have to multiply two proportions (aka
fractions):

P(Ain CG) = P(Ain C) « P(Ain gametes of C with A)
P(AinCG)=3x1=1=025

So it turns out that probabilities can be multiplied (at least sometimes).

4.3.1 Probability properties - summary

The above was my interpretation of the probability properties explained with
biological examples instead of the standard fair coins tosses (not the perfect
analogy though, since the events are not quite independent). Let’s sum up of
what we learned. I'll do this on a coin toss examples (outcome: heads or tails),
you compare it with the examples from Q&As above.

1. Probability of an event is a proportion (or fraction) of times this event hap-

pens to the total amount of possible distinctive events. Example: P(heads) =

heads _ 1 _
heads+tails — 2 0.5

2. Probability of an impossible event is equal to 0. Probability of a certain
event is equal to 1. So, the probability takes values between 0 (inclusive)
and 1 (inclusive).

3. Probabilities of the mutually exclusive complementary events add up to 1.
Example: P(heads or tails) = P(heads) + P(tails) = 5 + 3 =1

4. Probability of two mutually exclusive complementary events occurring at
the same time is 0 (cannot get both heads and tails in a single coin toss).

5. Probability of two mutually exclusive complementary events occurring one
after another is a product of two probabilities.

Example: probability of getting two tails in two consecutive coin tosses
P(tails and tails) = P(tails in 1st toss) x P(tails in 2nd toss)

P(tails and tails) = 3« 1 = 1 = 0.25

Actually, the last is also true for two simultaneous coin tosses (imagine that
one coin lands on a floor a few milliseconds before the other). Moreover,
notice that here, the result of the first coin toss does not influence the result
of the second coin toss (they are independent).

62 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Anyway, the chances are that whenever you say P(this) AND P(that) you
should use multiplication. Whereas whenever you say P(this) OR P(that)
you ought to use addition. Of course you should always think does it make
sense before you do it (if the events are not mutually exclusive and indepen-
dent then it may not). To check your reasoning it may be easier to think about
counts and their proportions. The latter can be translated to probabilities.

4.4 Probability - theory and practice

OK, in the previous chapter (see Section 4.3) we said that a person with blood
group AB would produce gametes A and 8 with probability 50% (p = 3 = 0.5)
each. A reference value for sperm count!? is 16000’000 per mL or 16’000 per
pL. Given that last value, we would expect 8’000 cells (16’000 * 0.5) to contain
allele A and 8’000 (16’000 * 0.5) cells to contain allele B.

Let’s put that to the test.

Wait! Hold your horses! We're not going to take biological samples. Instead
we will do a computer simulation.

import Random as Rand

Rand.seed!(321)

gametes = Rand.rand(["A", "B"], 16_000)
first(gametes, 5)

[IIBII’ "A", IIB", "A”, ||B||]

First, we import a package to generate random numbers (import Random as Rand
—). Then we set seed to some arbitrary number (Rand.seed!(321)) in order to
reproduce the results see the docs!3. Thanks to the above you should get the
exact same result as I did (assuming you're using the same version of Julia).
Then we draw 16’000 gametes out of two available (gametes = Rand.rand(["A",
— "g"], 16_000)) with function rand (drawing with replacement) from Random
library (imported as Rand). Finally, since looking through all 16’000 gametes is
tedious we display only first 5 (first(gametes, 5)) to have a sneak peak at the
result.

Let’s write a function that will calculate the number of gametes for us.

function getCounts(v::Vector{T})::Dict{T,Int} where T
counts::Dict{T,Int} = Dict()
for elt in v
if haskey(counts, elt) #1
counts[elt] = counts[elt] + 1 #2
else #3

12 https://en.wikipedia
.org/wiki/Semen_anal
ysis#Sperm_count

B https://docs.julialang
.org/en/v1/stdlib/Ra
ndom/#Random.seed!

https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!

STATISTICS - INTRODUCTION 63

counts[elt] = 1 #4
end #5
end
return counts
end

Try to figure out what happened here on your own. If you need a refresher on 1, https://docs julialang

dictionaries in Julia see Section 3.5.3 or the docs!4. .org/en/v1/base/collec
tions/#Base.Dict

Briefly, first we initialize an empty dictionary (counts::Dict{T,Int} = Dict()) with
keys of some type T (elements of that type compose the vector v). Next, for
every element (elt) in the vector v we check if it is present in the counts (if
~haskey (counts, elt)). If it is we add 1 to the previous count (counts[elt] =
—counts[elt] + 1). If not (else) we put the key (elt) into the dictionary with
count 1. In the end we return the result (return counts). The if ... else block
(lines with comments #1-#5) could be replaced with one line (counts[elt] = get(
—counts, elt, 0) + 1), butIthought the more verbose version would be easier
to understand.

Let’s test it out.

gametesCounts = getCounts(gametes)
gametesCounts

Dict{String, Int64} with 2 entries:
"B" => 8082
"A" => 7918

Hmm, that’s odd. We were suppose to get 8’000 gametes with allele A and 8’000

with allele 8. What happened? Well, reality. After all “All models are wrong, h“/PSf/k / ;—‘/I;]Yikipjdlia
.0rg/ Wikl _models

but some are useful”*®. Our theoretical reasoning was only approximation of _are_wrong

the real world and as such cannot be precise (although with greater sample
sizes comes greater precision). For instance, you can imagine that a fraction
of the gametes were damaged (e.g. due to some unspecified environmental
factors) and underwent apoptosis (aka programmed cell death). So that’s how
it is, deal with it.

OK, let’s see what are the experimental probabilities we got from our hmm...
experiment.

function getProbs(counts::Dict{T, Int})::Dict{T,Float64} where T
total:: Int = sum(values(counts))
return Dict(k => v/total for (k, v) in counts)

end

https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

64 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

First we calculate total counts no matter the gamete category (sum(values(counts
—))). Then we use a dictionary comprehension, similar to the comprehension
we met before (see Section 3.6.3). Briefly, for each key and value in counts (for
< (k,v) in counts) we create the same key in a new dictionary with a new value
being the proportion of v in total (k => v/total).

And now the experimental probabilities.

gametesProbs = getProbs(gametesCounts)
gametesProbs

Dict{String, Float64} with 2 entries:
"B" => 0.505125
"A" => 0.494875

One last point. While writing numerous programs I figured out it is sometimes
better to represent things (internally) as numbers and only in the last step
present them in a more pleasant visual form to the viewer (this way may be
faster computationally). In our case we could have used o as allele A and 1 as
allele 8 like so.

Rand.seed!(321)
gametes = Rand.rand([0, 1], 16_000)
first(gametes, 5)

[1, 0, 1, 0, 1]

Then to get the counts of the alleles I could type:

alleleBCount = sum(gametes)
alleleACount = length(gametes) - alleleBCount
(alleleACount, alleleBCount)

(7918, 8082)

And to get the probabilities for the alleles I could simply type:

alleleBProb = sum(gametes) / length(gametes)
alleleAProb = 1 - alleleBProb
(round(alleleAProb, digits=6), round(alleleBProb, digits=6))

(0.494875, 0.505125)

STATISTICS - INTRODUCTION 65

Go ahead. Compare the numbers with those that you got previously and ex-
plain it to yourself why this second approach works. Once you're done click
the right arrow to explore probability distributions in the next section.

Note: Similar functionality to getCounts and getProbs can be found in StatsBase.jl,

16 https:/ /juliastats.org
. 16 ; 17 ps://] g
see: countmap and proportionmap™’. /StatsBase.jl/stable/cou

nts/#StatsBase.countma

P

17 https:/ /juliastats.org
4.5 Probability distribution /StatsBase jl/stable/cou

nts/#StatsBase.proport

ionmap

Another important concept worth knowing is that of probability distribution!®. https://en.wikipedia

Let’s explore it with some, hopefully interesting, examples. -org/wiki/Probability_
et’s explore it with some, hopetully interesting, examples disteibution

First, imagine I offer Your a bet. You roll two six-sided dice. If the sum of the
dots is 12 then I give you $125, otherwise you give me $5. Hmm, sounds like a
good bet, doesn’t it? Well, let’s find out. By flexing our probabilistic muscles
and using a computer simulation this should not be too hard to answer.

-

function getSumOf2DiceRoll()::Int
return sum(Rand.rand(1:6, 2))
end

Rand.seed!(321)

numOfRolls = 100_000

diceRolls = [getSumOf2DiceRoll() for _ in 1:numOfRolls]
diceCounts = getCounts(diceRolls)

diceProbs = getProbs(diceCounts)

Here, we rolled two 6-sided dice 100 thousand (105) times. The code intro-
duces no new elements. The functions: getCounts, getProbs, Rand.seed! were al-
ready introduced in the previous chapter (see Section 4.4). And the for _ in
construct we met while talking about for loops (see Section 3.6.1).

So, let’s take a closer look at the result.

(diceCounts[12], diceProbs[12])

(2780, 0.0278)

It seems that out of 100’000 rolls with two six-sided dice only 2780 gave us two
sixes (6 + 6 = 12), so the experimental probability is equal to 0.0278. But is
it worth it? From a point of view of a single person (remember the bet is you
vs. me) a person got probability of diceProbs[12] = 0.0278 to win $125 and a
probability of sum([get (diceProbs, i, 0) for i in 2:11]) =0.9722 tolose $5. Since

https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution

66 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

all the probabilities (for 2:12) add up to 1, the last part could be rewrittenas 1 -
< diceProbs[12] =0.9722. Using Julia I can write this in the form of an equation
like so:

-

function getOutcomeOfBet(probWin::Float64, moneyWin::Real,
probLose::Float64, moneylLose::Real)::Float64

return probWin % moneyWin - probLose * moneylLose
end

outcomeOfibet = getOutcomeOfBet(diceProbs[12], 125, 1 - diceProbs[12], 5)

round(outcomeOfibet, digits=2) 1/100

L

-1.39
In total you are expected to lose $ 1.39.

Now some people may say “Phi! What is $1.39 if I can potentially win $125 in
a few tries”. It seems to me those are emotions (and perhaps greed) talking,
but let’s test that too.

If 200 people make that bet (100 bet $5 on 12 and 100 bet $125 on the other
result) we would expect the following outcome:

-

numOfBets = 100

outcomeOf100bets = (diceProbs[12] * numOfBets = 125) -
((1 - diceProbs[12]) x numOfBets * 5)

outcomeOf100bets = ((diceProbs[12] * 125) - ((1 - diceProbs[12]) * 5)) % 100

outcomeOf100bets = outcomeOfibet * numOfBets

round(outcomeOf100bets, digits=2)

L

-138.6

OK. So, above we introduced a few similar ways to calculate that. The result
of the bets is -138.6. In reality roughly 97 people that bet $5 on two sixes (6 +
6 = 12) lost their money and only 3 of them won $125 dollars which gives us
3% $125 — 97 * $5 = —$110 (the numbers are not exact because based on the
probabilities we got, e.g. 2.78 people and not 3).

Interestingly, this is the same as if you placed that same bet with me 100 times.
Ninety-seven times you would have lost $5 and only 3 times you would have
won $125 dollars. This would leave you over $110 poorer and me over $110
richer ($110 transfer from you to me where the money should be).

STATISTICS - INTRODUCTION 67

It seems that instead of betting on 12 (two sixes) many times you would be
better off had you started a casino or a lottery. Then you should find let’s say
1’000 people daily that will take that bet (or buy $5 ticket) and get you $ 1386.0
(outcomeofibet 1000) richer every day (well, probably less, because you would
have to pay some taxes, still this makes a pretty penny).

OK, you saw right through me and you don’t want to take that bet. Hmm, but
what if I say a nice, big “I'm sorry” and offer you another bet. Again, you roll
two six-sided dice. If you get 11 or 12 I give you $90 otherwise you give me
$10. This time you know right away what to do:

s)

pWin = sum([diceCounts[i] for i in 11:12]) / numOfRolls

pWin = sum([diceProbs[i] for i in 11:12])
pLose = 1 - pWin

round(pWin % 90 - pLose x 10, digits=2)

round(getOutcomeOfBet (pWin, 90, pLose, 10), digits=2)

-1.54

So, to estimate the probability we can either add number of occurrences of 11
and 12 and divide it by the total occurrences of all events OR, as we learned in
the previous chapter (see Section 4.3), we can just add the probabilities of 11
and 12 to happen. Then we proceed with calculating the expected outcome of
the bet and find out that I wanted to trick you again (“I'm sorry. Sorry.”).

Now, using this method (that relies on probability distribution) you will be
able to look through any bet that I will offer you and choose only those that
serve you well. OK, so what is a probability distribution anyway? Well, it is just
the value that probability takes for any possible outcome. We can represent it ,, tps:/ Jjuliapackages.
graphically by using any of Julia’s plotting libraries!. com/c/graphical-plott
ing
Here, I'm going to use CairoMakie.jl20
the eye plots and is simple enough (that’s what I think after I read its Basic

Tutorial?!). Nota bene also its error messages are quite informative (once you

which seems to produce pleasing to * https://docs.makie.o
rg/stable/
2 https://docs.makie.o
rg/stable/tutorials/basi
learn to read them). c-tutorial/

import CairoMakie as Cmk

function getSortedKeysVals(d::Dict{A,B})::Tuple{
Vector{A},Vector{B}} where {A,B}

sortedKeys::Vector{A} = keys(d) |> collect |> sort
sortedvVals::Vector{B} = [d[k] for k in sortedKeys]

https://juliapackages.com/c/graphical-plotting
https://juliapackages.com/c/graphical-plotting
https://juliapackages.com/c/graphical-plotting
https://docs.makie.org/stable/
https://docs.makie.org/stable/
https://docs.makie.org/stable/tutorials/basic-tutorial/
https://docs.makie.org/stable/tutorials/basic-tutorial/
https://docs.makie.org/stable/tutorials/basic-tutorial/

68 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

return (sortedKeys, sortedVals)
end

xsl, ysl = getSortedKeysVals(diceCounts)
xs2, ys2 = getSortedKeysVals(diceProbs)

fig = Cmk.Figure()
Cmk .barplot(fig[1, 1:2], xs1, ysi,
color="red",
axis=(;
title="Rolling 2 dice 100'000 times",
xlabel="Sum of dots",
ylabel="Number of occurrences",
xticks=2:12)

Cmk.barplot(fig[2, 1:2], xs2, ys2,
color="blue",
axis=(;
title="Rolling 2 dice 100'000 times",
xlabel="Sum of dots",
ylabel="Probability of occurrence",
xticks=2:12)

fig

Note: Because of the compilation process running Julia’s plots for the first time
may be slow. If that is the case you may try some tricks recommended by package
designers, e.g. this one from the creators of Gadﬂy.jlzz.

First, we extracted the sorted keys and values from our dictionaries (diceCounts
and diceProbs) using getSortedkeysvals. The only new element here is |> opera-
tor. It’s role is piping?3 the output of one function as input to another function.
So keys(d) |> collect |> sortisjust another way of writing sort(collect(keys(d)
—)). In both cases first we run keys(d), then we use the result of this function
as an input to collect function, and finally pass its result to sort function. Out
of the two options, the one with |> seems to be clearer to me.

Regarding the getSortedkeysvals it returns a tuple of sorted keys and values
(that Correspond with the sorted keys). In line xs1, ys1 = getSortedKeysVals(
<—diceCounts) we unpack and assign them to xs1 (it gets the sorted keys) and
ys1 (it gets values that correspond with the sorted keys). We do likewise for
diceProbs in the line below.

In the next step we draw the distributions as bar plots (cmk.barplot). The code
seems to be pretty self explanatory after you read the tutorial?* that Ijust men-
tioned. Two points of notice here (in case you wanted to know more): 1) the

2 http://gadflyjl.org/s
table/#Compilation

2 https://docs.julialang
.org/en/vl /manual/fu
nctions/#Function-com
position-and-piping

https://docs.makie.o

rg/stable/tutorials/basi
c-tutorial/

Z https://docs.julialang
.org/en/vl /manual/fu

nctions/#Keyword-Arg
uments

http://gadflyjl.org/stable/#Compilation
http://gadflyjl.org/stable/#Compilation
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.makie.org/stable/tutorials/basic-tutorial/
https://docs.makie.org/stable/tutorials/basic-tutorial/
https://docs.makie.org/stable/tutorials/basic-tutorial/
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments

STATISTICS - INTRODUCTION 69

axis=, colors, xlabel=, etc. are so called keyword argumentszs, 2) the axis key-
word argument accepts a so called named tuple?®. OK, let’s get back to the
graph. The number of counts (number of occurrences) on Y-axis is displayed
using scientific notation, i.e. 1.0210* is 10°000 (one with 4 zeros) and 1.5x10%
is 15"000.

Rolling 2 dice 100'000 times

& 1.50x10% -
Q
c
g
g 1.00x10% -
5
& 5.00x10°
£
=1
2] [
0-
: | ; i T : T i : T :
2 3 4 5 6 7 8 9 10 11 12
Sum of dots
Rolling 2 dice 100'000 times
L1h]
S 015
o
5
§ 0.10
5
=
1 . .
o
0
£ [|
% 0.001
T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12

Sum of dots

OK, but why did I even bother to talk about probability distributions (except
for the great enlightenment it might have given to you)? Well, because it is
important. It turns out that in statistics one relies on many probability distri-
butions. For instance:

e We want to know if people in city A are taller than in city B. We take at ran-
dom 10 people from each of the cities, we measure them and run a famous
Student’s T-test?” to find out. It gives us the probability that helps us an-
swer our question. It does so based on a t-distribution?® (see the upcoming
Section 5.3).

o We want to know if cigarette smokers are more likely to believe in ghosts.
What we do is we find random groups of smokers and non-smokers and ask
them about it (Do you believe in ghosts?). We record the results and run
a chi squared test? that gives us the probability that helps us answer our
question. It does so based on a chi squared distribution®” (see the upcoming
Section 6.3).

% https://docs julialang
.org/en/vl/base/base
/#Core.NamedTuple

Figure 4.3: Rolling two
6-sided dice (counts
and probabilities).

7 https://en.wikipedia
.org/wiki/Student%27
s_t-test

B https://en.wikipedia
.org/wiki/Student%?27
s_t-distribution

¥ https://en.wikipedia
.org/wiki/Chi-squared
_test

% https://en.wikipedia
.org/wiki/Chi-squared
_distribution

https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple
https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple
https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution

70 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

OK, that should be enough for now. Take some rest, and when you're ready
continue to the next chapter.

4.6 Normal distribution

Let’s start where we left. We know that a probability distribution is a (possi-
bly graphical) depiction of the values that probability takes for any possible
outcome. Probabilities come in different forms and shapes. Additionally one
probability distribution can transform into another (or at least into a distribu-
tion that resembles another distribution).

Let’s look at a few examples.

Figure 4.4: Experi-
mental binomial and
multinomial probability

distributions.
0.15 4
0.10 A
0.05
0.00
T T T T 1 T 1 T

0 1 1 2 3 4 5 6
Number of heads Number of dots

Binomial distribution (tossing a fair coin) Multinomial distribution (rolling 6-sided dice)

Probability of outcome
Probability of outcome

Here we got experimental distributions for tossing a standard fair coin and

81 https://github.com/b
-lukaszuk/R]J_BS_eng/
pets for this chapter’! and it uses the same functions that we developed pre- tree/main/code_snipp
ets/ch04

rolling a six-sided dice. The code for Figure 4.4 can be found in the code snip-

viously.

Those are examples of the binomial (bi - two, nomen - name, those two names
could be: heads/tails, A/B, or most general success/failure) and multinomial
(multi - many, nomen - name, here the names are 1:6) distributions. Moreover,
both of them are examples of discrete (probability is calculated for a few dis-

https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04

STATISTICS - INTRODUCTION 71

tinctive values) and uniform (values are equally likely to be observed) distri-
butions.

Notice that in the Figure 4.4 (above) rolling one six-sided dice gives us an
uniform distribution (each value is equally likely to be observed). However in
the previous chapter when tossing two six-sided dice we got the distribution
that looks like this.

Rolling 2 dice 100'000 times Figure 4.5: Experi-
° mental probability
2 015+ distribution for rolling
g two 6-sided dice.
g 0.10-
s
=
3 0.05
3
o
DDD L T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12
Sum of dots
. 32 L. . , . . . 82 https://en.wikipedia
What we got here is a bell** shaped distribution (¢'mon use your imagination).

.org/wiki/Bell
Here the middle values are the ones most likely to occur. It turns out that quite

a few distributions may transform into the distribution that is bell shaped (as
an exercise you may want to draw a distribution for the number of heads when
tossing 10 fair coins simultaneously). Moreover, many biological phenomena

got abell shaped distribution, e.g. men’s height or the famous intelligence quo-

8 https://en.wikipedia
.org/wiki/Intelligence
on a graph it looks like this. _quotient

% https://en.wikipedia

In Figure 4.6 the upper panel depicts standard normal distributions (¢ = 0,0 = .org/wiki/Normal_dis
tribution

tient® (aka IQ). The theoretical name for it is normal distribution3*. Placed

1, explanation in a moment), a theoretical distribution that all statisticians and
probably some mathematicians love. The bottom panel shows a distribution
that is likely closer to the adult males” height distribution in my country. Long
time ago I read that the average height for an adult man in Poland was 172
[ecm] (5.64 [feet]) and the standard deviation was 7 [cm] (2.75 [inch]), hence
this plot.

Note: In order to get a real height distribution in a country you should probably
visit a web site of the country’s statistics office instead relying on information like
mine.

As you can see normal distribution is often depicted as a line plot. That is be-
cause it is a continuous distribution (the values on x axes can take any number I

)))) 35 ° https://en.wikipedia
from a given range). Take a look at the height. In my old identity card”> next .org/wiki/Polish_ident

to the field “Height in cm” stands “181”, but is this really my precise height? ity card

https://en.wikipedia.org/wiki/Bell
https://en.wikipedia.org/wiki/Bell
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Polish_identity_card
https://en.wikipedia.org/wiki/Polish_identity_card
https://en.wikipedia.org/wiki/Polish_identity_card

72 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Standard normal distribution

o o o
rn w S
I | |

=
o
1

Probability of outcome

e
S
I

Plausible distribution of adult males' height (in Poland)

o

=]

=
1

Probability of outcome
o
o
ra

0.00

T T T T T T T
151 158 165 172 179 186 193
Height in em

What if during a measurement the height was 180.7 or 181.3 and in the ID
there could be only height in integers. I would have to round it, right? So
based on the identity card information my real height is probably somewhere
between 180.5 and 181.49999... . Moreover, it can be any value in between (like
180.6354551..., although in reality a measuring device does not have such a pre-
cision). So, in the bottom panel of Figure 4.6 I rounded theoretical values for
height (round(height, digits=0)) obtained from Rand.rand(Dsts.Normal(172, 7), 10
<—_000_000) (Dsts is Distributions package that we will discuss soon enough).
Next, I drew bars (using cmk.barplot that you know), and added a line that
goes through the middle of each bar (to make it resemble the figure in the top
panel).

As you perhaps noticed, the normal distribution is characterized by two pa-
rameters:

e the average (also called the mean) (in a population denoted as: y, in a sam-
ple as: 7)

o the standard deviation (in a population denoted as: o, in a sample as: s, sd
or std)

We already know the first one (average) from school and previous chapters
(e.g. getAvg from Section 3.6.1). However, the last one (standard deviation)
requires some explanation.

Figure 4.6: Examples of
normal distribution.

STATISTICS - INTRODUCTION 73

Let’s say that there are two students. Here are their grades.

gradesStudA =
gradesStudB =

[3.0, 3.5, 5.0, 4.5, 4.0]
[6.0, 5.5, 1.5, 1.0, 6.0]

Imagine that we want to send one student to represent our school in a national

level competition. Therefore, we want to know who is a better student. So,
let’s check their averages.

avgStudA = getAvg(gradesStudA)

avgStudB = getAvg(gradesStudB)
(avgStudA, avgStudB)

(4.0, 4.0)

Hmm, they are identical. OK, in that situation let’s see who is more consistent
with their scores.

To test the spread of the scores around the mean we will subtract every single
score from the mean and take their average (average of the differences).

diffsStudA = gradesStudA .- avgStudA

.- avgStudB
(getAvg(diffsStudA), getAvg(diffsStudB))

diffsStudB = gradesStudB

(0.0, 0.0)

Note: Here we used the dot operators/functions described in Section 3.6.5

The method is of no use since sum(diffs) is always equal to 0 (and hence the
average is 0). See for yourself

(

diffsStudA,
diffsStudB

([-1.0, -0.5, 1.0, 0.5, 0.0],
[2.0, 1.5, -2.5, -3.0, 2.0])

And

(sum(diffsStudA), sum(diffsStudB))

74 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

(0.0, 0.0)

Personally in this situation I would take the average of diffs without looking
at the sign of each difference (abs function does that) like so.

absDiffsStudA = abs.(diffsStudA)
absDiffsStudB = abs.(diffsStudB)
(getAvg(absbDiffsStudA), getAvg(absDiffsStudB))

(0.6, 2.2)

Based on this we would say that student A is more consistent with their grades
so he is probably a better student of the two. I would send student A to repre-
sent the school during the national level competition. Student B is also good,
but choosing him is a gamble. He could shine or embarrass himself (and spot
the school’s name) during the competition.

For any reason statisticians decided to get rid of the sign in a different way,
i.e. by squaring (2% = z x z) the diffs. Afterwards they calculated the aver-
age of it. This average is named variance®®. Next, they took square root of it
(Vvariance) to get rid of the squaring (get the spread of the data in the same
scale as the original values, since Va2 = x). So, they did more or less this

L

function getVar(nums::Vector{<:Real})::Real
avg::Real = getAvg(nums)
diffs::Vector{<:Real} = nums .- avg
squaredDiffs::Vector{<:Real} = diffs .A 2
return getAvg(squaredDiffs)

end

function getSd(nums::Vector{<:Real})::Real
return sqrt(getVar(nums))
end

(getSd(gradesStudA), getSd(gradesStudB))

(0.7071067811865476, 2.258317958127243)

Note: In reality the variance and standard deviation for a sample are calculated
with slightly different formulas. This is why the numbers returned here may be
marginally different from the ones produced by other statistical software. Still,
the functions above are easier to understand and give a better feel of the general
ideas.

% https://en.wikipedia
.org/wiki/Variance

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance

STATISTICS - INTRODUCTION 75

In the end we got similar numbers, reasoning, and conclusions to the ones
based on abs function. Both the methods rely on a similar intuition, but we
cannot expect to get the same results due to the slightly different methodology.
For instance given the diffs: [-2, 3] we get:

e for squaring: (—2% +3%)/2 = (4+9)/2 =13/2 =6.5and V6.5 = 2.55
e forabsvalues: (—2+3)/2=(2+3)/2=5/2=2.5

Although I like my method better the sd and squaring/square rooting is so
deeply fixed into statistics that everyone should know it. Anyway, as you can
see the standard deviation is just an average spread of data around the mean.
The bigger value for sd the bigger the spread. Of course the opposite is also
true.

And now a big question.
Why should we care about the mean (1,) or sd (o, s, sd, std) anyway?
The answer. For practical reasons that got something to do with the so called

three sigma rule®.

4.6.1 The three sigma rule

The rule® says that (here a simplified version made by me):

o roughly 68% of the results in the population lie within 4 1 sd from the mean
sy pop

e roughly 95% of the results in the population lie within 4- 2 sd from the mean

o roughly 99% of the results in the population lie within 4 3 sd from the mean

Example 1

Have you ever tested your blood®” and received the lab results that said some-
thing like

o RBC*0:4.45[10/uL] (4.2 - 6.00)

The RBC stands for red blood cell count and the parenthesis contain the ref-
erence values (if you are within this normal range then it is a good sign). But
where did those reference values come from? This Wikipedia’s page*! gives
us a clue. It reports a value for hematocrit*? (a fraction/percentage of whole
blood that is occupied by red blood cells) to be:

% https:/ /en.wikipedia
.org/wiki/68%E2%80
%9395%E2%80%9399.7
_rule

3 https://en.wikipedia
.org/wiki/68%E2%80
%9395%E2%80%9399.7
_rule

¥ https://en.wikipedia
.org/wiki/Blood

4 https:/ /en.wikipedia
.org/wiki/Complete_b
lood_count#Reference
_ranges

4 https://en.wikipedia
.org/wiki/Blood

4 https:/ /en.wikipedia
.org/wiki/Hematocrit

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Hematocrit
https://en.wikipedia.org/wiki/Hematocrit

76 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

e 45+ 7 (38-52%) for males
e 42 + 5 (37-47%) for females

Look at this + symbol. Have you seen it before? No? Then look at the three
sigma rule above.

The reference values were most likely composed in the following way. A large
number (let’s say 10'000-30"000) of healthy females gave their blood for testing.
Hematocrit value was calculated for all of them. The shape of the distribution
was established in a similar way to the one we did before (e.g. plotting with
a cmk function). The average hematocrit was 42 units, the standard deviation
was 5 units. The majority of the results (roughly 68%) lie within 4 1 sd from
the mean. If so, then we got 42 - 5 = 37, and 42 + 5 = 47. And that is how those
two values were considered to be the reference values for the population. Most
likely the same is true for other reference values you see in your lab results
when you test your blood*? or when you perform other medical examination.

Example 2

Let’s say a person named Peter lives in Poland. Peter approaches the famous
1Q test conducted at one of our universities. He read on the internet that there
are different intelligence scales** used throughout the world. His score is 125.
The standard deviation is 24. Is his score high, does it indicate he is gifted (a
genius level intellect)? Well, in order to be a genius one has to be in the top 2%
of the population with respect to their IQ value. What is the location of Peter’s
IQ value in the population.

The score of 125 is just a bit greater than 1 standard deviation above the mean
(which in an IQ test is always 100). From Section 4.5 we know that when we
add the probabilities for all the possible outcomes we get 1 (so the area under
the curve in Figure 4.6 is equal to 1). Half of the area lies on the left, half of
it on the right (3 = 0.5). So, a person with IQ = 100 is as intelligent or more
intelligent than half the people (3 = 0.5 = 50%) in the population. Roughly
68% of the results lies within 1 sd from the mean (half of it below, half of it
above). So, from IQ = 100 to IQ = 124 we got (68% / 2 = 34%). By adding
50% (IQ < 100) to 34% (100 < IQ < 124) we get 50% + 34% = 84%. Therefore
in our case Peter (with his IQ = 125) is more intelligent than 84% of people in
the population (so top 16% of the population). His intelligence is above the
average, but it is not enough to label him a genius.

4.6.2 Distributions package

This is all nice and good to know, but in practice it is slow and not precise
enough. What if in the previous example the IQ was let’s say 139. What is the

“ https://en.wikipedia
.org/wiki/Complete_b
lood_count

“ https://en.wikipedia
.org/wiki/Intelligence
_quotient#Current_test
S

https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests

STATISTICS - INTRODUCTION 77

percentage of people more intelligent than Peter. In the past that kind of ques-
tions were to be answered with satisfactory precision using statistical tables at

the end of a textbook. Nowadays it can be quickly answered with a greater
. . o . 45 Kk First let’s defi # https://juliastats.org
exactitude and speed, e.g. with the Distributions® package. First let’s define /Distributions.jl/stable/

a helper function that is going to tell us how many standard deviations above
46 4 https:/ /en.wikipedia
) .org/wiki/Standard_sco
re

or below the mean a given value is (it is called z-score

function getZScore(value::Real, mean::Real, sd::Real)::Float64
return (value - mean)/sd
end

OK, now let’s give it a swing. First, something simple IQ = 76, and 1Q = 124
(should equal to-1sd, +1 sd). Alternatively, look at the value returned by getzscore
as a value on the x-axis in Figure 4.6 (top panel).

(getzScore(76, 100, 24), getZScore(124, 100, 24))

(-1.0, 1.0)

Indeed, it seems to be working as expected, and now the value from this task

zScorePeterIQ139 = getZScore(139, 100, 24)
zScorePeterIQ139

1.625

Itis 1.625 sd above the mean. However, we cannot use it directly to estimate the

percentage of people above that score because due to the shape of the distribu-

tion in Figure 4.6 the change is not linear: 1 sd = 68%, 2 sd ~ 95%, 3 sd = 99%

(first it changes quickly then it slows down). This is where the Distributions

package comes into the picture. Under the hood it uses “scary’ mathematical ./ /en wikipedia
formulas for normal distribution*” to get us what we want. In our case we use -org/wiki/Normal_dis
it like this tribution

import Distributions as Dsts

Dsts.cdf(Dsts.Normal(), zScorePeterIQ139)

0.9479187205847805

Here we first create a standard normal distribution with y =0and o =1 (bsts
—.Normal()). Then we sum all the probabilities that are lower than or equal to
zScorePeterIQ139 = getZScore(139, 100, 24) = 1.625 standard deviation above the

https://juliastats.org/Distributions.jl/stable/
https://juliastats.org/Distributions.jl/stable/
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

78 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

mean with Dsts.cdf. We see that roughly 0.9479 = 95% of people is as intelligent
or less intelligent than Peter. Therefore in this case only ~0.05 or ~5% of people
are more intelligent than him. Alternatively you may say that the probability
that a randomly chosen person from that population is more intelligent than
Peter is =0.05 or ~5%.

Note: cdf in Dsts.cdf stands for cumulative distribution function*®. For more
information on Dsts. cdf see these docs?” or for Dsts.Normal those docs™V.

The above is a classical method and it is useful to know it. Based on the z-
score you can check the appropriate percentage/probability for a given value
in a table that is usually placed at the end of a statistics textbook. Make sure
you understand it since, we are going to use this method, e.g. in the upcoming
chapter on a Student’s t-test (see Section 5.2).

Luckily, in the case of the normal distribution we don’t have to calculate the
z-score. The package can do that for us, compare

Dsts.cdf(Dsts.Normal(), getZScore(139, 100, 24)),
Dsts.cdf(Dsts.Normal(100, 24), 139)

(0.9479187205847805, 0.9479187205847805)

S0, in this case you can either calculate the z-score for standard normal distri-
bution with ¢ = 0 and ¢ = 1 or define a normal distribution with a given mean
and sd (here dsts.Normal(100, 24)) and let the psts.cdf calculate the z-score (un-
der the hood) and probability (it returns it) for you.

To further consolidate our knowledge. Let’s go with another example. Re-
member that I'm 181 ¢cm tall. Hmm, I wonder what percentage of men in
Poland is taller than me if ¢ = 172 [cm] and 0 = 7 [cm].

1 - Dsts.cdf(Dsts.Normal(172, 7), 181)

0.09927139684333097

The psts.cdf gives me left side of the curve (the area under the curve for height
< 181). So in order to get those that are higher than me I subtracted it from 1.
It seems that under those assumptions roughly 10% of men in Poland are taller
than me (approx. 1 out of 10 men that I encounter is taller than me). I could
also say: “the probability that a randomly chosen man from that population is

“ https://en.wikipedia
.org/wiki/Cumulative
_distribution_function

4 https://juliastats.org
/Distributions.jl/stable
/univariate /#Distribut
ions.cdf-Tuple%7BUni
variateDistribution, %2
OReal"o7D

¥ https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.Normal

51 https:/ /juliastats.org

/Distributions.jl/stable

/univariate/#Distribut

ions.ccdf-Tuple%7BUni
variateDistribution, %2

OReal%7D

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D

STATISTICS - INTRODUCTION 79

higher than me is ~0.1 or ~10%. Alternatively I could have used Dsts.ccdf’!
function which under the hood does 1 - Dsts.cdf(distribution, xCutoffPoint).

OK, and how many men in Poland are exactly as tall as I am? In general that is

52 https://en.wikipedia
.org/wiki/Probability_
for Dsts.pdf>3). It works pretty well for discrete distributions (we talked about density_function

the job for psts.pdf (pdf stands for probability density function®?, see the docs

them at the beginning of this sub-chapter). For instance theoretical probability * https://juliastats.org
/Distributions.jl/stable

of getting 12 while rolling two six-sided dice is Junivariate/#Distribut

Dsts.pdf(Dsts.Binomial(2, 1/6), 2) ions.pdf-Tuple%7BUni
variateDistribution, %2
OReal%7D
0.02777777777777778

Compare it with the empirical probability from Section 4.5 which was equal to
0.0278. Here we treated it as a binomial distribution (success: two sixes (6 + 6
= 12), failure: other result) hence psts.Binomial with 2 (number of dice to roll)
and 1/6 (probability of getting 6 in a single roll). Then we used Dsts.pdf to get
the probability of getting exactly two sixes. More info on dDsts.Binomial can be

found here®* and on psts.pdf can be found there®. 5 https:/ /juliastats.org
/Distributions.jl/stable

However there is a problem with using bsts.pdf for continuous distributions /univariate/#Distribut

ions.Binomial

% https://juliastats.org

theory there is an infinite number of values between 180 and 181 (like 180.1111, /Distributions.jl/stable

because it can take any of the infinite values within the range. Remember, in

180.12222, etc.). So usually for practical reasons it is recommended not to cal- {:{:‘pgf"ﬁ/}j ?;;E%‘;tl
culate a probability density function (hence pdf) for a continuous distribution ., ;,eDistribution, %2
(1 / infinity ~ 0). Still, remember that the height of 181 [cm] means that the OReal%7D

value lies somewhere between 180.5 and 181.49999... . Moreover, we can reli-

ably calculate the probabilities (with psts.cdf) for < 180.5 and < 181.49999...

so a good approximation would be

heightDist = Dsts.Normal(172, 7)
2
Dsts.cdf (heightDist, 181.49) - Dsts.cdf(heightDist, 180.50)

0.024724273314878698

OK. So it seems that roughly 2.5% of adult men in Poland got 181 [cm] in the
field “Height” in their identity cards. If there are let’s say 10 million adult
men in Poland then roughly 250000.0 (so 250 k) people are approximately my
height. Alternatively under those assumptions the probability that a random
man from the population is as tall as I am (181 cm in the height field of his
identity card) is ~0.025 or ~2.5%.

If you are still confused about this method take a look at the figure below.

Here for better separation I placed the height of men between 170 and 180
[cm]. The method that I used subtracts the area in blue from the area in red

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D

80 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Red color: height of men <= 180 [cm]

0.006

m
e
=)
S
o]

1

0.004 +
0.003
0.002

Probability of outco

0.001 A

0.000 A

T T T T T T T
151 158 165 172 179 186 193
Height in cm

Blue color: height of men <= 170 [cm]

0.006
0.005
0.004
0.003
0.002

0.001 A

Probability of outcome

0.000 -

T T T T T T T
151 158 165 172 179 186 193
Height in cm

(red - blue). That is exactly what I did (but for 181.49 and 180.50 [cm]) when
I typed Dsts.cdf (heightDist, 181.49) - Dsts.cdf(heightDist, 180.50) above.

OK, time for the last theoretical sub-chapter in this section. Whenever you're
ready click on the right arrow.

4.7 Hypothesis testing

OK, now we are going to discuss a concept of hypothesis testing. But first
let’s go through an example from everyday life that we know or at least can
imagine. Ready?

4.7.1 A game of tennis

So imagine there is a group of people and among them two amateur tennis
players: John and Peter. Everyone wants to know which one of them is a better
tennis player. Well, there is only one way to find out. Let’s play some games!

As far as I'm aware a tennis match can end with a win of one player, the other
loses (there are no draws). Before the games the people set the rules. Everyone
agrees that the players will play six games. To prove their supremacy a player
must win all six games (six wins in a row are unlikely to happen by accident, I

Figure 4.7: Using cdf to
calculate proportion of
men that are between
170 and 180 [cm] tall.

STATISTICS - INTRODUCTION 81

hope we can all agree on that). The series of games ends with the result 0-6 for
Peter. According to the previously set rules he is declared the local champion.

Believe it or not but this is what statisticians do. Of course they use more formal
methodology and some mathematics, but still, this is what they do:

before the experiment they start with two assumptions

— initial assumption: be fair and assume that both players play equally well
. . 56 % https://en.wikipedia
(this is called the null hypothesis®®, H) org/wiki/Null_hypot

— alternative assumption: one player is better than the other (this is called hesis

* https:/ /en.wikipedia
.org/wiki/Alternative_
hypothesis

the alternative hypothesis®, H)

e before the experiment they decide on how big a sample should be (in our
case six games).

e before the experiment they decide on the cutoff level, once it is reached they
will abandon the initial assumption (H,,) and chose the alternative (H ,).
In our case the cutoff is: six games in a row won by a player

o they conduct the experiment (players play six games) and record the results

o after the experiment when the result provides enough evidence (in our case
six games won by the same player) they decide to reject H,, and choose H 4.
Otherwise they stick to their initial assumption (they do not reject H,)

And that’s how it is, only that statisticians prefer to rely on probabilities instead
of absolute numbers. So in our case a statistician says:

“lassume that Hj, is true. ThenIwill conduct the experiment and record the re-
sult. I will calculate the probability of such a result (or a more extreme result)
happening by chance. If it is small enough, let’s say 5% or less (prob < 0.05),
then the result is unlikely to have occurred by accident. Therefore I will reject
my initial assumption (H,) and choose the alternative (H ,). Otherwise I will
stay with my initial assumption.”

Let’s see such a process in practice and connect it with what we already know.

4.7.2 Tennis - computer simulation

First a computer simulation.

6 0
function getResultOf6TennisGames()
return sum(Rand.rand(0:1, 6)) # 0 1
end

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis

82 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Rand.seed!(321)

tennisGames = [getResultOf6TennisGames() for _ in 1:100_000]
tennisCounts = getCounts(tennisGames)

tennisProbs = getProbs(tennisCounts)

Here getResult0f6TennisGames returns a result of 6 games under H,, (both players
got equal probability to win a game). When John wins a game then we get 0,
when Peter we get 1. So if after running getResult0f6TennisGames we get, e.g. 4 we
know that Peter won 4 games and John won 2 games. We repeat the experiment
100000 times to get a reliable estimate of the results distribution.

OK, at the beginning of this chapter we intuitively said that a player needs to
win 6 games to become the local champion. We know that the result was 0-6
for Peter. Let’s see what is the probability that Peter won by chance six games
in a row (assuming H, is true).

tennisProbs[6]

0.01538

In this case the probability of Peter winning by chance six games in a row is
very small. If we express it graphically it roughly looks like this:

prob = 0.015

impossible [[[[[IIIILITITIITTTEEEEEEEEEEEEEEPEEEETTEEEEEEEETT] certain
A

So, it seems that intuitively we set the cutoff level well. Let’s see if the statisti-
cian from the quotation above would be satisfied (“If it is small enough, let’s
say 5% or less (prob < 0.05), then the result is unlikely to have occurred by
accident. Therefore I will reject my initial assumption (H,) and choose the
alternative (H 4). Otherwise I will stay with my initial assumption.”)

First, let’s compare them graphically.

prob = 0.05

impossible [[[[LIIIEITITTITTTEEEEECEEEEEEEEEEEEETTEEEEEEEETTD certain
A

prob = 0.0153

impossible [[[|[TTITTEEEITTEEEEEECEEEEEEEEEEEEEEEPTEEEETTTTT] certain

A

Although our text based graphics is slightly imprecise, we can see that the
obtained probability lies below (to the left of) our cutoff level. And now more
precise mathematical comparison.

STATISTICS - INTRODUCTION 83

L

5] 5/100 0.05
function shouldRejectHO(prob::Float64, siglLevel::Float64 = 0.05)::Bool
@assert (0 <= prob <= 1) "prob must be in range [0-1]"
@assert (0 <= siglevel <= 1) "siglLevel must be in range [0-1]"
return prob <= siglevel
end

shouldRe jectHO(tennisProbs[6])

true

Indeed he would. He would have to reject H, and assume that one of the
players (here Peter) is a better player (H ,).

4.7.3 Tennis - theoretical calculations
OK, to be sure of our conclusions let’s try the same with the Distributions®®
package (imported as psts) that we met before.

Remember one of the two tennis players must win a game (John or Peter). So
this is a binomial distributions we met before. We assume (H,,) both of them
play equally well, so the probability of any of them winning is 0.5. Now we
can proceed like this using a dictionary comprehension similar to the one that
we have met before (e.g. see getProbs definition from Section 4.4)

tennisTheorProbs = Dict(
i => Dsts.pdf(Dsts.Binomial(6, 0.5), i) for i in 0:6
)

tennisTheorProbs[6]

0.015624999999999977

Yep, the number is pretty close to tennisProbs[6] we got before which is 0.01538.
So we decide to go with H , and say that Peter is a better player. Just in case
I will place both distributions (experimental and theoretical) one below the
other to make the comparison easier. Behold

Once we warmed up we can even calculate the probability using our knowl-
edge from Section 4.3.1. We can do this since basically given our null hypoth-
esis (H,) we compared the result of a game between John and Peter to a coin
toss (0 or 1, John or Peter, heads or tails).

The probability of Peter winning a single game is P(Peter) = 1 = 0.5. Peter
won all six games. In order to get two wins in a row, first he had to won one

% https://juliastats.org
/Distributions.jl/stable/

https://juliastats.org/Distributions.jl/stable/
https://juliastats.org/Distributions.jl/stable/

84 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Results of 6 tennis games if HO is true
(experimental probability distribution)

o 0.34
E
[=]
e
3 0.2-
B
=
T 0.1+
]
e}
[
o
0.0_ T T T T T T T
0 1 2 3 4 5 6
Number of times Peter won
Results of 6 tennis games if HO is true
(theoretical probability distribution)
o 0.3
E
Q
2
302
k]
=
S 0.1+
]
o
[
& 0.0

0 1 2 3 4 5 51
Number of times Peter won

game. In order to get three wins in a row first he had to won two games in
a row, and so on. So he had to win game 1 AND game 2 AND game 3 AND
... . Given the above, and what we stated in Section 4.3.1, here we deal with a
conjunction of probabilities. Therefore we use probability multiplication like
S0

tennisTheorProbWin6games = 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5

tennisTheorProbWin6games = 0.5 * 6

tennisTheorProbWin6games

0.015625

Compare it with tennisTheorprobs[6] calculated by Distributions package

(tennisTheorProbs[6], tennisTheorProbWin6games)

(0.015624999999999977, 0.015625)

They are the same. The difference is caused by a computer representation of
floats and their rounding (as a reminder see Section 3.3.3, and Section 3.9.2).

Figure 4.8: Probability
distribution for 6 tennis
games if H is true.

STATISTICS - INTRODUCTION 85

Anyway, I just wanted to present all three methods for two reasons. First, that’s
the way we checked our reasoning at math in primary school (solving with
different methods). Second, chances are that one of the explanations may be
too vague for you, if so help yourself to the other methods :)

In general, as a rule of thumb you should remember that the null hypothesis
(H,) assumes lack of differences/equality, etc. (and this is what we assumed
in this tennis example).

4.7.4 One or two tails

Hopefully, the above explanations were clear enough. There is a small nu-
ance to what we did. In the beginning of Section 4.7.1 we said “To prove their
supremacy a player must win all six games’. A player, so either John or Pe-
ter. Still, we calculated only the probability of Peter winning the six games
(tennisTheorProbs[6]), Peter and not John. What we did there was calculating
one tail probability® (see the figures in the link). Now, take a look at Fig-
ure 4.8 (e.g. bottom panel) the middle of it is ‘body’ and the edges to the left
and right are tails.

This approach (one-tailed test) is rather OK in our case. However, in statistics
it is frequently recommended to calculate two-tails probability (usually this is
the default option in many statistical functions/packages). That is why at the
beginning of Section 4.7.1 I wrote ‘alternative assumption: one player is better
than the other (this is called alternative hypothesis, H ,)".

¥ https://en.wikipedia
.org/wiki/One-_and_
two-tailed_tests

Calculating the two-tailed probability is very simple, we can either add tennisTheorProbs

<+[6] + tennisTheorProbs[0] (remember 0 means that John won all six games) or
multiply tennisTheorProbs[6] by 2 (since the graph in Figure 4.8 is symmetrical).

(tennisTheorProbs[6] + tennisTheorProbs[0], tennisTheorProbs[6] * 2)

(0.031249999999999955, 0.031249999999999955)

Once we got it we can perform our reasoning one more time.

shouldRe jectHO(tennisTheorProbs[6] + tennisTheorProbs[0])

true

In this case the decision is the same (but that is not always the case). As I said
before in general it is recommended to choose a two-tailed test over a one-tailed
test. Why? Let me try to explain this with another example.

https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

86 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Imagine I tell you that I'm a psychic that talks with the spirits and I know a
lot of the stuff that is hidden from mere mortals (like the rank and suit of a
covered playing card®?). You say you don’t believe me and propose a simple
test.

You take 10 random cards from a deck. My task is to tell you the color (red or
black). And I did, the only problem is that I was wrong every single time! If
you think that proves that your were right in the first place then try to guess
10 cards in a row wrongly yourself (if you don’t have cards on you go with 10
consecutive fair coin tosses).

It turns out that guessing 10 cards wrong is just as unlikely as guessing 10 of
them right (0.5410 = 0.0009765625 or 1 per 1024 tries in each case). This could
potentially mean a few things, e.g.

o Ireally talk with the spirits, but in their language “red” means “black”, and
“black” means “red” (cultural fun fact: they say Bulgarians nod their heads
when they say “no”, and shake them for “yes”),

e [live in one of 1024 alternative dimensions/realities and in this reality I
managed to guess all of them wrong, when the other versions of me had
mixed results, and that one version of me guessed all of them right,

e [am a superhero and have an x-ray vision in my eyes so I saw the cards, but
I decided to tell them wrong to protect my secret identity,

e I cheated, and were able to see the cards beforehand, but decided to mock
you,

e or some other explanation is in order, but I didn’t think of it right now.

The small probability only tells us that the result is unlikely to has happened by
chance alone. Still, you should always choose your null (H,) and alternative
(H 4) hypothesis carefully. Moreover, it is a good idea to look at both ends of
a probability distribution.

4.7.5 All the errors that we make

Long time ago when I was a student I visited a local chess club. I was late that
day, and only one person was without a pair, Paul. I introduced myself and
we played a few games. In chess you can either win, lose, or draw a game.
Unfortunately, I lost all six games we played that day. I was upset, I assumed
I just encountered a better player. I thought: “Too bad, but next week I will
be on time and find someone else to play with” (nobody likes loosing all the
time). The next week I came to the club, and again the only person without a
pair was Paul (just my luck). Still, despite the bad feelings I won all six games
that we played that day (what are the odds). Later on it turned out that me

8 https://en.wikipedia
.org/wiki/Playing_card

https://en.wikipedia.org/wiki/Playing_card
https://en.wikipedia.org/wiki/Playing_card

STATISTICS - INTRODUCTION 87

and Paul are pretty well matched chess players (we played chess at a similar
level).

The story demonstrates that even when there is a lot of evidence (six lost games
during the first meeting) we can still make an error by rejecting our null hy-
pothesis (H).

In fact, whenever we do statistics we turn into judges, since we can make a
mistake in two ways (see Figure 4.9).

Reality

guilty innocent

innocent

Verdict

An accused is either guilty or innocent. A judge (or a jury in some countries)
sets a verdict based on the evidence.

If the accused is innocent but is sentenced anyway then it is an error, it is usu-
ally called type I error®® (FP - false positive in Figure 4.9). Its probability is
denoted by the first letter of the Greek alphabet, so alpha («).

In the case of John and Peter playing tennis the type I probability was < 0.05.
More precisely it was tennisTheorpProbs[6] = 0.015625 (for a one tailed test).

If the accused is guilty but is declared innocent then it is another type of error, it
is usually called type II error (FN - false negative in Figure 4.9). Its probability
is denoted by the second letter of the Greek alphabet, so beta (). Beta helps
us determine the power of a test®? (power = 1-), i.e. if H , is really true then
how likely it is that we will choose H 4 over H,,.

So to sum up, in the judge analogy a really innocent person is H, being true
and a really guilty person is H 4 being true.

Unfortunately, most of the statistical textbooks that I've read revolve around
type I errors and alphas, whereas type Il error is covered much less extensively

Figure 4.9: A judge
making a verdict. FP -
false positive, FN - false
negative.

61 https://en.wikipedia
.org/wiki/Type_I_and
_type_II_errors

62 https://en.wikipedia
.org/wiki/Power_of_a
_test

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Power_of_a_test
https://en.wikipedia.org/wiki/Power_of_a_test
https://en.wikipedia.org/wiki/Power_of_a_test

88 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

(hence my own knowledge of the topic is more limited).

In the tennis example above we rejected H,, hence here we risk committing
the type I error. Therefore, we didn’t speak about the type II error, but don't
worry we will discuss it in more detail in the upcoming exercises at the end of
this chapter (see Section 4.8.5).

4.7.6 Cutoff levels

OK, once we know what are the type I and type II errors it is time to discuss
their cutoff values.

Obviously, the ideal situation would be if the probabilities of both type I and
type Il errors were exactly 0 (no mistakes is always the best). The only problem
is that this is not possible. In our tennis example one player won all six games,
and still some small risk of a mistake existed (tennisTheorProbs[6] = 0.015625).
If you ever see a statistical package reporting a p-value to be equal, e.g. 0.0000,
then this is just rounding to 4 decimal places and not an actual zero. So what
are the acceptable cutoff levels for « (probability of type I error) and 3 (prob-
ability of type Il error).

The most popular choices for a cutoff values are:

e 0.05, or
e (0.01

Actually, as far as I'm aware, the first of them (o = 0.05) was initially proposed

by Ronald Fisher®, a person sometimes named the father of the XX-century https://en.wikipedia

statistics. This value was chosen arbitrarily and is currently frowned upon by -org/wiki/Ronald_Fis
I

some modern statisticians as being to lenient. Therefore, 0.01 is proposed as a o

more reasonable alternative.

As regards [its two most commonly accepted cutoff values are:

e (0.2, 0r
e (0.1

Actually, as far as I remember the textbooks usually do not report values for 3,
but for power of the test (if H 4 is really true then how likely it is that we will
choose H 4 over H,) to be 0.8 or 0.9. However, since as we mentioned earlier
power = 1 - 3, then we can easily calculate the value for this parameter.

OK, enough of theory, time for some practice. Whenever you're ready click the
right arrow to proceed to the exercises that I prepared for you.

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher

STATISTICS - INTRODUCTION 89

4.8 Statistics intro - Exercises

So, here are some exercises that you may want to solve to get from this chap-
ter as much as you can (best option). Alternatively, you may read the task
descriptions and the solutions (and try to understand them).

4.8.1 Exercise 1

Some mobile phones and cash dispensers prevent unauthorized access to the
resources by using a 4-digit PIN number.

What is the probability that a randomly typed number will be the right one?

Hint. Calculate how many different numbers you can type. If you get stuck, try to
reduce the problem to 1- or 2-digit PIN number.

4.8.2 Exercise 2

A few years ago during a home party a few people bragged that they can rec-
ognize beer blindly, just by taste, since, e.g. “the beer of brand X is great, of
brand Y is OK, but of brand Z tastes like piss” (hmm, how could they tell?).

We decided to put that to the test. We bought six different beer brands. One
person poured them to cups marked 1-6. The task was to taste the beer and
correctly place a label on it.

What is the probability that a person would place correctly 6 labels on 6 dif-
ferent beer at random.

Hint. This task may be seen as ordering of different objects. As always you may reduce
the problem to a smaller one. For instance think how many different orderings of 3 beer
do we have.

4.8.3 Exercise 3

Do you still remember our tennis example from Section 4.7.1, I hope so. Let’s
modify it a bit to solidify your understanding of the topic.

Imagine John and Peter played 6 games, but this time the result was 1-5 for
Peter. Is the difference statistically significant at the crazy cutoff level for o
equal to 0.15. Calculate the probability (the famous p-values) for one- and
two-tailed tests.

90 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4.8.4 Exercise 4

In the opening to Section 4.7.5 I told you a story from the old times. The day
when I met my friend Paul in a local chess club and lost 6 games in a row while
playing with him. So, here is a task for you. If we were both equally good chess
players at that time then what is the probability that this happened by chance
(to make it simpler do one-tailed test)?

4.8.5 Exercise 5

Remember how in Section 4.7.5 we talked about a type II error. We said that
if we decide not to reject H, we risk to commit a type II error or B. It is FN,
i.e. false negative, in our judge analogy from Section 4.7.5 (declaring a person
that is really guilty to be innocent). In statistics this is when the H , is true but
we fail to say so and stay with our initial hypothesis (H,).

So here is the task.

Assume that the result of the six tennis games was 1-5 for Peter (like in Sec-
tion 4.8.3). Write a computer simulation that estimates the probability of type
II error that we commit in this case by not rejecting H,, (if the cutoff level for «
is equal to 0.05). To make it easier use one-tailed probabilities.

Hint: assume that H 4 is true and that in reality Peter wins with John on average with
the ratio 5 to 1 (5 wins - 1 defeat).

4.9 Statistics intro - Solutions

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

4.9.1 Solution to Exercise 1

The easiest way to solve this problem is to reduce it to a simpler one.

If the PIN number were only 1-digit, then the total number of possibilities
would be equal to 10 (numbers from 0 to 9).

For a 2-digit PIN the pattern would be as follow:

00
01
02

STATISTICS - INTRODUCTION 91

09
10
11
12
19
20
21
98
99

So, for every number in the first location there are 10 numbers (0-9) in the sec-
ond location. Therefore in total we got numbers in the range 00-99, or to write
it mathematically 10 * 10 different numbers (numbers per pos. 1 * numbers
per pos. 2).

By extension the total number of possibilities for a 4-digit PIN is:

1 2 3
(10 % 10 = 10 = 10, 1074, length(0:9999))

(10000, 10000, 10000)

So 10’000 numbers. Therefore the probability for a random number being the
right one is 1/10_000 = 0.0001

Similar methodology is used to assess the strength of a password to an internet
website.

4.9.2 Solution to Exercise 2

OK, so let’s reduce the problem before we solve it.

If I had only 1 beer and 1 label then there is only one way to do it. The label in
my hand goes to the beer in front of me.

For 2 labels and 2 beer it goes like this:

ab
b a

I place one of two labels on a first beer, and I'm left with only 1 label for the
second beer. So, 2 possibilities in total.

For 3 labels and 3 beer the possibilities are as follow:

92 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

So here, for the first beer I can assign any of the three labels (a, b, or ¢). Then I
move to the second beer and have only two labels left in my hand (if the first
got a, then the second can get only b or ¢). Then I move to the last beer with
the last label in my hand (if the first two were a and b then I'm left with ¢). In
total I got 3 « 2 « 1 = 6 possibilities.

It turns out this relationship holds also for bigger numbers. In mathematics it
can be calculated using the factorial® function that is already implemented in
Julia (see the docs®?).

Still, for practice we're gonna implement one on our own with the foreach we
met in Section 3.6.4.

L

function myFactorial(n::Int)::Int
@assert n > 0 "n must be positive"
product::Int = 1
foreach(x -> product x= x, 1:n)
return product

end

myFactorial(6)

720

Note: You may also just use Julia’s prod66 function, e.g. prod(1:6) = 720. Still, be
aware that factorial numbers grow pretty fast, so for bigger numbers, e.g. myFactorial
< (20) or above you might want to change the definition of myFactorial to use
BigInt that we met in Section 3.9.5.

So, the probability that a person correctly labels 6 beer at random is round(1/
—factorial(6), digits=5) = 0.00139 = 1/720.

I guess that is the reason why out of 7 people that attempted to correctly label
6 beer the results were as follows:

e one person correctly labeled 0 beer

https://en.wikipedia
.org/wiki/Factorial

8 https://docs.julialang
.org/en/v1/base/math
/#Base.factorial

% https://docs.julialang
.org/en/vl/base/collec
tions/#Base.prod

https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/collections/#Base.prod
https://docs.julialang.org/en/v1/base/collections/#Base.prod
https://docs.julialang.org/en/v1/base/collections/#Base.prod

STATISTICS - INTRODUCTION 93

e five people correctly labeled 1 beer
e one person correctly labeled 2 beer

I leave the conclusions to you.

4.9.3 Solution to Exercise 3

OK, for the original tennis example (see Section 4.7.1) we answered the ques-
tion by using a computer simulation first (Section 4.7.2). For a change, this
time we will start with a “purely mathematical” calculations. Ready?

In order to get the result of 1-5 for Peter we would have to get a series of games
like this one:

0 - John's victory, 1 - Peter's victory
011111

Probability of either John or Peter winning under H, (assumption that they
play equally well) is 1 = 0.5. So here we got a conjunction of probabilities
(John won AND Peter won AND Peter won AND ...). According to what we’ve
learned in Section 4.3.1 we should multiply the probabilities by each other.

Therefore, the probability of the result aboveis 6.5 « 0.5 « 0.5 « ... 0re.5 » 6
= 0.015625. But wait, there’s more. We can get such a result (1-5 for Peter) in
a few different ways, i.e.

-

\
J

11111
or
01111
or
10111
or
11011
or
11101
or
11110

Ll X . A o)

Note: For a big number of games it is tedious and boring to write down all

the possibilities by hand. In this case you may use Julia’s binomial®” function, https:/ /docs.julialang
e.g. binomial(6, 5) = 6. This tells us how many different fives of six objects can .org/en/v1/base/math
we get. /#Base.binomial

Aswe said amoment ago, each of this series of games occurs with the probabil-
ity of 0.015625. Since we used OR (see the comments in the code above) then

https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial

94 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

according to Section 4.3.1 we can add 0.015625 six times to itself (or multiply
it by 6). So, the probability is equal to:

probito5 = (0.5%6) x 6
probilto5

0.09375

Of course we must remember what our imaginary statistician said in Section 4.7.1:
“I assume that H|, is true. Then I will conduct the experiment and record then

result. I will calculate the probability of such a result (or more extreme result)
happening by chance.”

More extreme than 1-5 for Peter is 0-6 for Peter, we previously (see Section 4.7.3)

calculated it to be 0.5%6 = 0.015625. Finally, we can get our p-value (for one-
tailed test)

problto5 = (0.5%6) * 6
prob0to6 = 0.5%6
probBothOneTail = probito5 + prob0to6

probBothOneTail

0.109375

Note: Once you get used to calculating probabilities you should use quick meth-
ods like those from Distributions package (presented below), but for now it is

important to understand what happens here, hence those long calculations (of
probBothOneTail) shown here.

Let’s quickly verify it with other methods we met before (e.g. in Section 4.7)

-

probBothOneTail,

1 - Dsts.cdf(Dsts.Binomial(6, 0.5), 4),
Dsts.pdf.(Dsts.Binomial(6, 0.5), 5:6) |> sum,
tennisProbs[5] + tennisProbs[6]

(0.109375, 0.109375, 0.10937499999999988, 0.11052000000000001)

Yep, they all appear the same (remember about floats rounding and the dif-
ference between theory and practice from Section 4.4).

So, is it significant at the crazy cutoff level of o = 0.15?

STATISTICS - INTRODUCTION 95

shouldRe jectHO(probBothOneTail, 0.15)

true

Yes, it is (we reject H, in favor of H,). And now for the two-tailed test (so
either Peter wins at least 5 to 1 or John wins with the exact same ratio).

2
{shouldRejectHO(probBothOneTail x 2, 0.15) J

false
Here we cannot reject our H,,.

Of course we all know that this was just for practice, because the acceptable
type I error cutoff level is usually 0.05 or 0.01. In this case, according to both
the one-tailed and two-tailed tests we failed to reject the H,,.

BTW, this shows how important it is to use a strict mathematical reasoning and
to adhere to our own methodology. I don’t know about you but when I was a
student I would have probably accepted the result 1-5 for Peter as an intuitive
evidence that he is a better tennis player.

We will see how to speed up the calculations in this solution in one of the

upcoming chapters (see Section 6.2).

4.9.4 Solution to Exercise 4

OK, there maybe more than one way to solve this problem.
Solution 4.1

In chess, a game can end with one of the three results: white win, black win
or a draw. If we assume each of those options to be equally likely for a two
well matched chess players then the probability of each of the three results
happening by chance is 1/3 (this is our Hj).

So, similarly to our tennis example from Section 4.7.1 the probability (one-
tailed test) of Paul winning all six games is

1/3 6
(
round((1/3)"6, digits=5),
round(Dsts.pdf (Dsts.Binomial(6, 1/3), 6), digits=5)
)

96 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

(0.00137, 0.00137)

So, you might think right now ‘“That task was a piece of cake” and you would
be right. But wait, there’s more.

Solution 4.2

In chess played at a top level (>= 2500 ELO) the most probable outcome is & httos: L

ttps://en.wikipedia

draw. It occurs with a frequency of roughly 50% (see this Wikipedia’s page®®). .org/wiki/Draw_(ches

Based on that we could assume that for a two equally strong chess players the s)#Frequency of draw
S

probability of:

e white winning is 1/4,
e drawis2/4=1/2,
e black winning is 1/4

So under those assumptions the probability that Paul won all six games is

1/4 6
(
round((1/4)"6, digits=5),
round(Dsts.pdf (Dsts.Binomial(6, 1/4), 6), digits=5)
)

(0.00024, 0.00024)

So abit lower, than the probability we got before (which was (1/3)#6 = 0.00137).

OK, so I presented you with two possible solutions. One gave the probabil-
ity of (1/3)*6 = 0.00137, whereas the other (1/4)#6 = 0.00024. So, which one
is it, which one is the true probability? Well, most likely neither. Those are

both just estimations of the true probability and they are only as good as the

8 https://en.wikipedia
b .org/wiki/All_models
useful 69- _are_wrong

assumptions that we make. After all: “All models are wrong, but some are

If the assumptions are correct, then we can get a pretty good estimate. Both
the Solution 4.1 and Solution 4.2 got reasonable assumptions but they are not
necessarily true (e.g. I'm not a >= 2500 ELO chess player). Still, for practical
reasons they may be more useful than just guessing, for instance if you were
ever to bet on a result of a chess game/match (do you remember the bets from
Section 4.5?). Probably they would be not be enough for you to win such a bet,
but they could allow you to reduce the losses.

https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

STATISTICS - INTRODUCTION 97

However, let me state it clearly. The reason I mentioned it is not for you to place
bets on chess matches but to point on similarities to statistical practice.
" https://en.wikipedia

.org/wiki/One-way_a
e.g. in the upcoming Section 5.4). Sometimes the analysis requires to conduct nalysis_of_variance

For instance, there is a method named one-way ANOQVA70 (we will discuss it,

a so called post-hoc test’!. There are quite a few of them to choose from (see ”' http&{(/ elf)l'Wik}ilPedia
the link above) and they rely on different assumptions. For instance one may I:Igv/lzl YPosthoca
do the Fisher’s LSD test or the Tukey’s HSD test. Which one to choose? I
think you should choose the test that is better suited for the job (based on

your knowledge and recommendations from the experts).

Regarding the above mentioned tests. The Fisher’s LSD test was introduced by . e
ttps://en.wikipedia

.org/wiki/Ronald_Fis
Some time later John Tukey”3 considered it to be too lenient (too easily rejects her

7 https://en.wikipedia
.org/wiki/John_Tukey

Ronald Fisher’? (what a surprise). LSD stands for Least Significant Difference.

H, and declares significant differences) and offered his own test (operating on
different assumptions) as an alternative. For that reason it was named HSD
which stands for Honestly Significant Difference. I heard that statisticians rec-
ommend to use the latter one (although in practice I saw people use either of
them).

4.9.5 Solution to Exercise 5

OK, so we assume that Peter is a better player than John and he consistently
wins with John. On average he wins with the ratio 5 to 1 (5:1) with his oppo-
nent (this is our true H ,). Let’s write a function that gives us the result of the
experiment if this H , is true.

function getResultOfiTennisGameUnderHA()::Int
0 1
return Rand.rand([0, 1, 1, 1, 1, 1], 1)
end

function getResultOf6TennisGamesUnderHA()::Int
return [getResultOfiTennisGameUnderHA() for _ in 1:6] |> sum
end

L J

The code is fairly simple. Let me just explain one part. Under H , Peter wins
5 out of six games and John 1 out of 6, therefore we choose one number out of
[e, 1, 1, 1, 1, 1] (0 - John wins, 1 - Peter wins) with our Rand.rand([0, 1, 1,
—1, 1, 11, 1).

Note: If the H, would be let’s say 1:99 for Peter, then to save you some typing
I would recommend to do something like, e.g. return (Rand.rand(1:100, 1) <=

<$99) ? 1 : 0. It draws one random number out of 100 numbers. If the number
is 1-99 then it returns 1 (Peter wins) else it returns 0 (John wins). BTW. When a

https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/John_Tukey
https://en.wikipedia.org/wiki/John_Tukey

98 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

probability of an event is small (e.g. < 1%) then to get its more accurate estimate
you could/should increase the number of computer simulations [e.g. nun0fSimul
below should be 1_000_000 (shorter form 1046) instead of 100_000 (shorter form
1045)].

Alternatively the code from the snippet above could be shortened to

1
function getResultOf6TennisGamesUnderHA()::Int
return Rand.rand([0, 1, 1, 1, 1, 1], 6) |> sum
end

Now let’s run the experiment, let’s say 100_000 times, and see how many times
we will fail to reject H,,. For that we will need the following helper functions

-

function play6tennisGamesGetPvalue()::Float64

result:: Int = getResultOf6TennisGamesUnderHA()

0
oneTailPval::Float64 = Dsts.pdf.(Dsts.Binomial(6, 0.5), result:6) |> sum
return oneTailPval

end

function didFailToRejectHO(pVal::Float64)::Bool
return pval > 0.05
end

In play6tennisGamesGetPvalue we conduct an experiment and get a p-value (prob-
ability of type 1 error). First we get the result of the experiment under H 4, i.e
we assume the true probability of Peter winning a game with John to be 5/6
— = 0.8333. We assign the result of those 6 games to a variable result. Next
we calculate the probability of obtaining such a result by chance under H,,
i.e. probability of Peter winning is 1/2 = 0.5 as we did in Section 4.9.3. We
return that probability.

Previously we said that the accepted cutoff level for alpha is 0.05 (see Sec-
tion 4.7.6). If p-value < 0.05 we reject H, and choose H 4. Here for we need
to know whether we fail to reject H, hence didrailToRejectto function with pval
— > 0.05.

And now, we can go to the promised 100_000 simulations.

-

numOfSimul = 100_000
Rand.seed!(321)
notRejectedHd = [
didFailToRejectHO(play6tennisGamesGetPvalue()) for _ in 1:numOfSimul

1
probOfType2error = sum(notRejectedHd) / length(notRejectedHO)

L

STATISTICS - INTRODUCTION 99

0.66384

We run our experiment 100_000 times and record whether we failed to reject
H,. We put that to notRe jectedHo using comprehensions (see Section 3.6.3). We
get a vector of Bools (e.g. [true, false, true]). When used with sum function
Julia treats true as 1 and false as 0. We can use that to get the average of true
(fraction of times we failed to reject H,,). This is the probability of type I error,
it is equal to 0.66384. We can use it to calculate the power of a test (power =1

-B)-

function getPower(beta::Float64)::Float64
@assert (0 <= beta <= 1) "beta must be in range [0-1]"

return 1 - beta
end
powerOfTest = getPower (probOfType2error)

powerOfTest

0.33616

Finally, we get our results. We can compare them with the cutoff values from
Section 4.7.6, e.g. 5 < 0.2, power > 0.8. So it turns out that if in reality Peter is a
better tennis player than John (and on average wins with the ratio 5:1) then we
will be able to confirm that roughly in 3 experiments out of 10 (experiment -
the result of 6 games that they play with each other). This is because the power
of a test should be > 0.8 (accepted by statisticians), but it is 0.33616 (estimated
in our computer simulation). Here we can either say that they both (John and
Peter) play equally well (we did not reject H,) or make them play a greater
number of games with each other in order to confirm that Peter consistently
wins with John on average 5 to 1.

If you want to see a graphical representation of the solution to exercise 5 take
a look at the figure below.

The top panels display the probability distributions for our experiment (6 games
of tennis) under H,, (red bars) and H, (blue bars). Notice, that the blue bars
for 0, 1, and 2 are so small that they are barely (or not at all) visible on the
graph. The black dotted vertical line is a cutoff level for type I error (or «),
which is 0.05. The bottom panel contains the distributions superimposed one
on the other. The probability of type II error (or) is the sum of the heights
of the blue bar(s) to the left from the black dotted vertical line (the cutoff level
for type L error). The power of a test is the sum of the heights of the blue bar(s)
to the right from the black dotted vertical line (the cutoff level for type I error).

Hopefully the explanations above were clear enough. Still, the presented solu-
tion got a few flaws, i.e. we hard coded 6 into our functions (e.g. getResultof1TennisGameUnderHA

100 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Results of 6 tennis games if HO is true Results of 6 tennis games if HA is true
g p(Peter's win) = 0.5 g p(Peter's win) = 5/6 = 0.83
g 031 : g 041
E 0.2- éa:o.os ?_’ 0.3 1
o N S 24
= - =
201 . .= Z 0.1+ .
'cé 0.0 T T T T T T : T "é 0.0 T T T T T T T
o 0 1 2 3 4 5 6 o 0 1 2 3 4 5 6
Number of times Peter won Number of times Peter won
HO (red) and HA (blue) together.
Beta - blue bar(s) to the left from the dotted line
Power - blue bar(s) to the right from the dotted line
0.4 :
o= 0.05
E .
g 0.3 B
=2 H
=] :
B] :
> 0.2 :
=] .
8 :
5 0.1 H
0.0 —
T T T T T T T
0 1 2 3 4 5 6

Number of times Peter won

—, play6tennisGamesGetPvalue), moreover running 100-000 simulations is proba-
bly less efficient than running purely mathematical calculations. Let’s try to
add some plasticity and efficiency to our code (plus let’s check the accuracy of
our computer simulation).

to the right from that point on x-axis (>point) we reject H® and choose HA
n - number of trials (games)
function getXForBinomRightTailProb(n::Int, probHO::Float64,
rightTailProb::Float64):: Int
@assert (0 <= rightTailProb <= 1) "rightTailProb must be in range [0-1]"
@assert (0 <= probHO <= 1) "probHO must be in range [0-1]"
@assert (n > 0) "n must be positive"
return Dsts.cquantile(Dsts.Binomial(n, probHO), rightTailProb)
end

n - number of trials (games), x - number of successes (Peter's wins)
returns probability (under HA) from far left up to (and including) x
function getBetaForBinomialHA(n::Int, x::Int, probHA::Float64)::Float64
@assert (0 <= probHA <= 1) "probHA must be in range [0-1]"
@assert (n > 0) "n must be positive"
@assert (x >= 0) "x mustn't be negative"
return Dsts.cdf(Dsts.Binomial(n, probHA), x)
end

Note: The above functions should work correctly if probHO < probHA, i.e. the

Figure 4.10: Graphical
representation of the
estimation process for
type Il error and the
power of a test.

STATISTICS - INTRODUCTION 101

probability distribution under H, is on the left and the probability distribution
under H , is on the right side of a graph, i.e. the case you see in Figure 4.10.

The function getXForBinomRightTailProb returns a value (number of Peter’s wins,

number of successes, value on x-axis in Figure 4.10) above which we reject

H, in favor of H, (if we feed it with cutoff for « equal to 0.05). Take a look

at Figure 4.10, it returns the value on x-axis to the right of which the sum of

heights of the red bars is lower than the cutoff level for alpha (type I error). It

d b . 4D 1674 £ . h h " https:/ /juliastats.org
oes so by wrapping around Dsts.cquantile’* function (that runs the necessary /Distributions.jl/stable

mathematical calculations) for us. /univariate/#Distribut
ions.cquantile-Tuple%?7
BUnivariateDistributio

. . 7
Once we get this cutoff point (number of successes, here number of Peter’s . %20Real%7D

wins) we can feed it as an input to getBetaForBinomialtA. Again, take a look at
Figure 4.10, it calculates for us the sum of the heights of the blue bars from the
far left (0 on x-axis) up-to the previously obtained cutoff point (the height of
that bar is also included). Let’s see how it works in practice.

xCutoff = getXForBinomRightTailProb(6, 0.5, 0.05)
probOfType2error2 = getBetaForBinomialHA(6, xCutoff, 5/6)
powerOfTest2 = getPower(probOfType2error2)

(probOfType2error, probOfType2error2, powerOfTest, powerOfTest2)

(0.66384, 0.6651020233196159, 0.33616, 0.3348979766803841)

They appear to be close enough which indicates that our calculations with the
computer simulation were correct.

Bonus. Sample size estimation.
As a bonus to this exercise let’s talk about sample sizes.

Notice that after solving this exercise we said that if Peter is actually a better
player than John and wins on average 5:1 with his opponent then still, most
likely we will not be able to show this with 6 tennis games (powerofTest2 =
0.3349). So, if ten such experiments would be conducted around the world
for similar Peters and Johns then roughly only in three of them Peter would
be declared a better player after running statistical tests. That doesn’t sound
right.

In order to overcome this at the onset of their experiment a statistician should
also try to determine the proper sample size. First, he starts by asking himself

https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D

102 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

a question: “how big difference will make a difference”. This is an arbitrary
decision (at least a bit). Still, I think we can all agree that if Peter would win
with John on average 99:1 then this would make a practical difference (proba-
bly John would not like to play with him, what’s the point if he would be still
loosing). OK, and how about Peter wins with John on average 51:49. This does
not make a practical difference. Here they are pretty well matched and would
play with each other since it would be challenging enough for both of them
and each one could win a decent amount of games to remain satisfied. Most
likely, they would be even unaware of such a small difference.

In real life a physician could say, e.g. “I'm going to test a new drug that should
reduce the level of ‘bad cholesterol’ (LDL-C”®). How big reduction would I
like to detect? Hmm, I know, 30 [mg/dL] or more because it reduces the risk
of a heart attack by 50%” or “By at least 25 [mg/dL] because the drug that is
already on the market reduces it by 25 [mg/dL]” (the numbers were made up
by me, I'm not a physician).

Anyway, once a statistician gets the difference that makes a difference he tries
to estimate the sample size by making some reasonable assumptions about rest
of the parameters.

In our tennis example we could write the following function for sample size
estimation

0 ©.5
function getSampleSizeBinomial(probHA::Float64,
cutoffBeta::Float64=0.2,
cutoffAlpha::Float64=0.05,
twoTail::Bool=true,
start:: Int=6, finish::Int=40)::Int

@assert (0 <= cutoffBeta <= 1) "cutoffBeta must be in range [0-1]"
@assert (start > 0 && finish > 0) "start and finish must be positive

@assert (start < finish) "start must be smaller than finish"

probHO::Float64 = 0.5
sampleSize:: Int = -99
xCutoffForAlpha:: Int
beta::Float64 = 1.0

=0

if probHO >= probHA
probHA = 1 - probHA

end

if twoTail
cutoffAlpha =

end

cutoffAlpha / 2

" https://en.wikipedia
.org/wiki/Low-density
_lipoprotein

https://en.wikipedia.org/wiki/Low-density_lipoprotein
https://en.wikipedia.org/wiki/Low-density_lipoprotein
https://en.wikipedia.org/wiki/Low-density_lipoprotein

STATISTICS - INTRODUCTION 103

for n in start:finish
xCutoffForAlpha = getXForBinomRightTailProb(n, probHO®, cutoffAlpha)
beta = getBetaForBinomialHA(n, xCutoffForAlpha, probHA)
if beta <= cutoffBeta
sampleSize = n
break
end
end

return sampleSize
end

Maybe that is not the most efficient method, but it should do the trick.

First, we initialize a few variables that we will use later (probHe, sampleSize,
xCutoffForAlpha, beta). Then we compare probHe with probHA. We do this since
getXForBinomRightTailProb and getBetaForBinomialHA should work correctly only
when probHo < probHa (see the note under the code snippet with the functions
definitions). Therefore we need to deal with the case when it is otherwise (if
—probHe >= probHA). We do this by subtracting probHA from 1 and making it our
new probHA (probHA = 1 - probHA). Because of that if we ever type, e.g. probHa =
1/6 = 0.166, then the function will transform it to probtA=1-1/6 =5/6 = 0.833
(since in our case the sample size required to demonstrate that Peter wins on
average 1 out of 6 games, is the same as the sample size required to show that
John wins on average 5 out of 6 games).

Once we are done with that we go to another checkup. If we are interested
in two-tailed probability (twoTail) then we divide the number (cutoffAlpha =
—0.05) by two. Before 0.05 went to the right side (see the black dotted line in
Figure 4.10), now we split it, 0.025 goes to the left side, 0.025 goes to the right
side of the probability distribution. This makes sense since before (see Sec-
tion 4.7.4) we multiplied one-tailed probability by 2 to get the two-tailed prob-
ability, here we do the opposite. We can do that because the probability distri-
bution under H,, (see the upper left panel in Figure 4.10) is symmetrical (that is
why you mustn’t change the value of probHo in the body of getSampleSizeBinomial
).

Finally, we use the previously defined functions (getxForBinomRightTailProb and
getBetaForBinomialHA) and conduct a series of experiments for different sample
sizes (between start and finish). Once the obtained beta fulfills the require-
ment (beta <= cutoffBeta) we set sampleSize to that value (samplesize = n) and
stop subsequent search with a break statement (so if samplesize of 6 is OK, we
will not look at larger sample sizes). If the for loop terminates without satisfy-
ing our requirements then the value of -99 (sampleSize was initialized with it)

104 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

is returned. This is an impossible value for a sample size. Therefore it points
out that the search failed. Let’s put it to the test.

In this exercise we said that Peter wins with John on average 5:1 (H ,, prob
=5/6 = 0.83). So what is the sample size necessary to confirm that with the
acceptable type I error (alpha < 0.05) and type Il error (5 < 0.2) cutoffs.

sampleSizeHA5tol = getSampleSizeBinomial(5/6, 0.2, 0.05, false)
sampleSizeHA5tol

13

OK, so in order to be able to detect such a big difference (5:1, or even bigger)
between the two tennis players they would have to play 13 games with each
other (for one-tailed test). To put it into perspective and compare it with Fig-
ure 4.10 look at the graph below.

Figure 4.11: Graphical

0 1 2 3 4 5 6
Number of times Peter won

12 13

® Results of 13 tennis games if HO is true ° Results of 13 tennis games if HA is true .
E p(Peter's win) = 0.5 £ p(Peter's win) = 5/6 = 0.83 representation of type
8 0.20- ' 8038 II error and the power
3 015 ta =005 3 o =HE of a test for 13 tennis
2. 010 2 games between Peter
= = 0.1 1 1
= 0.05 = | T ‘ and John.
_50'00-\||\\||\|||\|| go'o-||||||||||i|;\
o 01234567 8910111213 o 012345678 910111213
Number of times Peter won Number of times Peter won
HO (red) and HA (blue) together.
Beta - blue bar(s) to the left from the dotted line
Power - blue bar(s) to the right from the dotted line
0.3 .
a = 0,05
@ .
E
g :
£ 021 : t
o H
B :
£ :
S 0.1+ : =
o -
e H
o H
0.0 L - —
T T T T T
7 8 9 10 11

If our function worked well then the sum of the heights of the blue bars to the
right of the black dotted line should be > 0.8 (power of the test) and to the left
should be < 0.2 (type II error or £3).

(

1 13, 5/6), 9

STATISTICS - INTRODUCTION 105

Dsts.pdf.(Dsts.Binomial(13, 5/6), 10:13) |> sum,
Dsts.cdf(Dsts.Binomial(13, 5/6), 9)

(0.841922621916511, 0.15807737808348934)

Yep, that’s correct. So, under those assumptions in order to confirm that Peter
is a better tennis player he would have to win > 10 games out of 13.

And how about the two-tailed probability (we expect the number of games to
be greater).

getSampleSizeBinomial(5/6, 0.2, 0.05)

17
Here we need 17 games to be sufficiently sure we can prove Peter’s supremacy.

OK. Let’s give our getSampleSizeBinomial one more swing. How about if Peter
wins with John on average 4:2 (H 4)?

sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05)
sampleSizeHA4t02

-99

Hmm, -99, so it will take more than 40 games (finish:: Int = 40). Now, we can
either stop here (since playing 40 games in a row is too time and energy con-
suming so we resign) or increase the value for finish like so

sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05, true, 6, 100)
sampleSizeHA4t02

72

Wow, if Peter is better than John in tennis and on average wins 4:2 then it would
take 72 games to be sufficiently sure to prove it (who would have thought).

Anyway, if you ever find yourself in need to determine sample size, /5 or the
power of a test (not only for one-sided tests as we did here) then you should
probably consider using PowerAnalyses.jl’® which is on MIT”7 license.

OK, I think you deserve some rest before moving to the next chapter so why
won't you take it now.

76 https:/ /github.com/r
ikhuijzer/PowerAnaly
ses.jl

7 https:/ /en.wikipedia
.org/wiki/MIT_License

https://github.com/rikhuijzer/PowerAnalyses.jl
https://github.com/rikhuijzer/PowerAnalyses.jl
https://github.com/rikhuijzer/PowerAnalyses.jl
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License

5 Comparisons - continuous data

OK, we finished the previous chapter with hypothesis testing and calculating
probabilities for binomial data (bi - two nomen - name), e.g. number of successes
(wins of Peter in tennis).

In this chapter we are going to explore comparisons between the groups con-
taining data on a continuous scale (like the height from Section 4.6).

5.1 Chapter imports

Later in this chapter we are going to use the following libraries

s)

import CairoMakie as Cmk

import CSV as Csv

import DataFrames as Dfs

import Distributions as Dsts
import HypothesisTests as Htests
import MultipleTesting as Mt
import Pingouin as Pg

import Random as Rand

import Statistics as Stats

Note: At the time I'm writing these words (29-08-2023) Pingouin1 package is Thttps://github.com/c
still under development. This may cause some inconveniences, warnings, etc. ~ lementpoiret/Pingouin.
Proceed with caution. j

If you want to follow along you should have them installed on your system. A

reminder of how to deal (install and such) with packages can be found here?. 2https://docs julialang

But wait, you may prefer to use Project.tonl and Manifest.toml files from the -0rg/en/vl/stdlib/Pkg/

code snippets for this chapter® to install the required packages. The instruc- https://github.com/b
-lukaszuk/R]_BS_eng/
tree/main/code_snipp
ets/ch05

* https://pkgdocs.julial
itis a good idea to put them here, after all imports should be at the top of your ang.org/v1/environme

tions you will find here*.

The imports will be placed in the code snippet when first used, but I thought

file (so here they are at the top of the chapter). Moreover, that way they will ™/
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from

https://github.com/clementpoiret/Pingouin.jl
https://github.com/clementpoiret/Pingouin.jl
https://github.com/clementpoiret/Pingouin.jl
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/

108 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

the «. j1 file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

5.2 One sample Student’s t-test

Imagine that in your town there is a small local brewery that produces quite
expensive but super tasty beer. You like it a lot, but you got an impression
that the producer is not being honest with their customers and instead of the
declared 500 [mL] of beer per bottle, he pours a bit less. Still, there is little you
can do to prove it. Or can you?

You bought 10 bottles of beer (ouch, that was expensive!) and measured the
volume of fluid in each of them. The results are as follows

a representative sample
beerVolumes = [504, 477, 484, 476, 519, 481, 453, 485, 487, 501]

5 https://docs.makie.o
rg/stable/examples/plo
function) . tting_functions/hist/i
ndex.html#hist

On a graph the volume distribution looks like this (it was drawn with Cmk.hist®

Histogram of beer volume distribution for 10 beer Figure 5.1: Histogram

of beer volume dis-
4 tribution for 10 beer
(fictitious data).
3 5
g
527
O
1 .
u .
T T T
450 475 500

Volume of beer in a bottle [mL]

You look at it and it seems to resemble a bit the bell shaped curve that we
discussed in the Section 4.6. This makes sense. Imagine your task is to pour
let’s say 1’000 bottles daily with 500 [mL] of beer in each with a big mug (there

https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist

COMPARISONS - CONTINUOUS DATA 109

is an erasable mark at a bottle’s neck). Most likely the volumes would oscillate
around your goal volume of 500 [mL], but they would not be exact. Sometimes
in a hurry you would add a bit more, sometimes a bit less (you could not
waste time to correct it). So it seems like a reasonable assumption that the
1’000 bottles from our example would have a roughly bell shaped (aka normal)
distribution of volumes around the mean.

Now you can calculate the mean and standard deviation for the data

s)

import Statistics as Stats

meanBeerVol = Stats.mean(beerVolumes)
stdBeerVol = Stats.std(beerVolumes)

(meanBeerVol, stdBeerVol)

(486.7, 18.055777776410274)

Hmm, on average there was 486.7 [mL] of beer per bottle, but the spread of
the data around the mean is also considerable (sd = 18.06 [mL]). The lowest
value measured was 453 [mL], the highest value measured was 519 [mL]. Still,
it seems that there is less beer per bottle than expected, but is it enough to draw
a conclusion that the real mean in the population of our 1’000 bottles is ~ 487.0
[mL] and not 500 [mL] as it should be? Let’s try to test that using what we
already know about the normal distribution (see Section 4.6), the three sigma
rule (Section 4.6.1) and the pistributions package (Section 4.6.2).

Let’s assume for a moment that the true mean for volume of fluid in the pop-
ulation of 1’000 beer bottles is meanBeervol = 486.7 [mL] and the true standard
deviation is stdBeervol = 18.06 [mL]. That would be great because now, based
on what we’ve learned in Section 4.6.2 we can calculate the probability that
a random bottle of beer got >500 [mL] of fluid (or % of beer bottles in the
population that contain >500 [mL] of fluid). Let’s do it

s)

import Distributions as Dsts

function getZScore(value::Real, mean::Real, sd::Real)::Float64
return (value - mean)/sd
end

expectedBeerVolmL = 500
fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),

getZScore(expectedBeerVolmL, meanBeerVol, stdBeerVol))
fractionBeerAbove500mL = 1 - fractionBeerLessEq500mL

110 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

fractionBeerAbove500mL

0.2306808956300721

I'm not going to explain the code above since for reference you can always
check Section 4.6.2. Still, under those assumptions roughly 0.23 or 23% of beer
bottles contain more than 500 [mL] of fluid. In other words under these as-
sumptions the probability that a random beer bottle contains >500 [mL] of
fluid is 0.23 or 23%.

There are 2 problems with that solution.
Problem 1

It is true that the mean from the sample is our best estimate of the mean in
the population (here 1’000 beer bottles poured daily). However, statisticians
proved that instead of the standard deviation from our sample we should use
the standard error of the mean®. It describes the spread of sample means
around the true population mean and it can be calculated as follows

— sd
sem = 7o, where
sem - standard error of the mean
sd - standard deviation

n - number of observations in the sample

Let’s enclose it into Julia code

function getSem(vect::Vector{<:Real})::Float64
return Stats.std(vect) / sqrt(length(vect))
end

Now we get a better estimate of the probability

fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),
getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))
fractionBeerAbove500mL = 1 - fractionBeerLessEq500mL

fractionBeerAbove500mL

0.00992016769999493

Under those assumptions the probability that a beer bottle contains >500 [mL]
of fluid is roughly 0.01 or 1%.

6 https:/ /en.wikipedia.o
rg/wiki/Standard_error

https://en.wikipedia.org/wiki/Standard_error
https://en.wikipedia.org/wiki/Standard_error

COMPARISONS - CONTINUOUS DATA 111

So, to sum up. Here, we assumed that the true mean in the population is our
sample mean (4 = meanBeervol). Next, if we were to take many small samples
like beervolumes and calculate their means then they would be normally dis-
tributed around the population mean (here ;1 = meanBeervol) with ¢ (standard
deviation in the population) = getSem(beerVolumes). Finally, using the three
sigma rule (see Section 4.6.1) we check if our hypothesized mean (expectedBeervolmL
—) lies within roughly 2 standard deviations (here approximately 2 sems) from
the assumed population mean (here y = meanBeervol).

Problem 2

The sample size is small (length(beervolumes) = 10) so the underlying distribu-
. . . , . . T . 7 7 https:/ /en.wikipedia.o

tion is quasi-normal (quasi - almost, as it were). It is called a t-distribution rg /wiki/Student%27s_
(for comparison of an exemplary normal and t-distribution see the figure be- t-distribution

low). Therefore to get a better estimate of the probability we should use a

t-distribution.

Standard normal distribution (solid red line) Figure 5.2: Compar-

and ison of normal and
t-distribution (dotted blue line) t-distribution with 4
0.4 degrees of freedom (df
' =4).
0.3
@
£
(=]
L
=1
o
S 02
E
=
@
e}
e
o
0.1
0.0 4

. s .. 8 https:/ /juliastats.or
Luckily our pistributions package got the t-distribution included (see the docs®). /Dis]iﬂbu]ﬂons‘jl / Stabi

As you remember the normal distribution required two parameters that de- /univariate/#Distribut
ions.TDist

? https://en.wikipedia.o
rg/wiki/Degrees_of_fre
ine that we recorded body masses of 3 people in the room: Paul, Peter, and edom_(statistics)

John.

scribed it: the mean and the standard deviation. The t-distribution requires
only the degrees of freedom®. The concept is fairly easy to understand. Imag-

https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)

112 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

peopleBodyMassesKg = [84, 94, 78]

sum(peopleBodyMassesKg)

256

As you can see the sum of those body masses is 256 [kg]. Notice, however, that
only two of those masses are independent or free to change. Once we know
any two of the body masses (e.g. 94, 78) and the sum: 256, then the third body
mass must be equal to sum(peopleBodyMasseskg) - 94 - 78 = 84 (it is determined,
it cannot just freely take any value). So in order to calculate the degrees of
freedom we type length(peopleBodyMasseskg) - 1 = 2. Since our sample size is
equal to length(beervolumes) = 10 then it will follow a t-distribution with length
< (beerVolumes) - 1 =9 degrees of freedom.

So the probability that a beer bottle contains >500 [mL] of fluid is

function getDf(vect::Vector{<:Real})::Int
return length(vect) - 1
end

fractionBeerLessEq500mL = Dsts.cdf(Dsts.TDist(getDf(beerVolumes)),
getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))

fractionBeerAbo