
Romeo and Julia, where Romeo
is Basic Statistics

Bartlomiej Lukaszuk

Bartlomiej Lukaszuk

https://b-lukaszuk.github.io/RJ_BS_eng/

Version: 2025-01-13

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://b-lukaszuk.github.io/RJ_BS_eng/

Contents

1 About 3

2 Why Julia 5

2.1 Julia is fast . 5
2.2 Julia is simple . 6
2.3 Pleasure to write . 7
2.4 Not mainstream . 7
2.5 Julia is free . 7

3 Julia - first encounter 9

3.1 Installation . 9
3.2 Language Constructs . 10
3.3 Variables . 10
3.4 Functions . 23
3.5 Decision Making . 30
3.6 Repetition . 36
3.7 Additional libraries . 43
3.8 Julia - Exercises . 44
3.9 Julia - Solutions . 47

4 Statistics - introduction 55

4.1 Chapter imports . 55
4.2 Probability - definition . 56
4.3 Probability - properties . 58
4.4 Probability - theory and practice 64
4.5 Probability distribution . 67
4.6 Normal distribution . 72
4.7 Hypothesis testing . 82
4.8 Statistics intro - Exercises . 91
4.9 Statistics intro - Solutions . 92

2 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

5 Comparisons - continuous data 109

5.1 Chapter imports . 109

5.2 One sample Student’s t-test . 110

5.3 Two samples Student’s t-test . 119

5.4 One-way ANOVA . 126

5.5 Post-hoc tests . 134

5.6 Multiplicity correction . 137

5.7 Exercises - Comparisons of Continuous Data 140

5.8 Solutions - Comparisons of Continuous Data 145

6 Comparisons - categorical data 165

6.1 Chapter imports . 165

6.2 Flashback . 165

6.3 Chi squared test . 167

6.4 Fisher’s exact test . 172

6.5 Bigger table . 174

6.6 Test for independence . 176

6.7 Exercises - Comparisons of Categorical Data 178

6.8 Solutions - Comparisons of Categorical Data 181

7 Association and Prediction 199

7.1 Chapter imports . 199

7.2 Linear relation . 199

7.3 Covariance . 201

7.4 Correlation . 204

7.5 Correlation Pitfalls . 207

7.6 Simple Linear Regression . 213

7.7 Multiple Linear Regression . 220

7.8 Exercises - Association and Prediction 226

7.9 Solutions - Association . 233

8 Time to say goodbye 249

1 https://julialang.org/

2 http://creativecomm
ons.org/licenses/by-n
c-sa/4.0/

1 About

Hi, I’m Bart and this is my first ‘experimental’ book entitled (for now):

“Romeo and Julia, where Romeo is Basic Statistics”

In this book I will explore some basic statistics (the way I see it) with Julia1.
Actually, I wrote the book for myself from the past. Too bad the past me won’t
be able to read it. Nevertheless, I hope it is gonna be of value to someone that
resembles me from the old days. Additionally, I wrote it to solidify my own
knowledge of statistics and Julia, after all they say we best teach that of what
we learn :) Still, the book may contain some errors so don’t believe everything
you read here.

Who am I (not)? I’m not a statistician, a mathematician, or a computer scien-
tist, but a biologist by education. Nowadays, I’m a programming enthusiast.
To be honest, statistics was not my favorite subject when I was at college. I
didn’t quite get it then, I got it somewhat better now. Hopefully all this will
make the book easier to digest, although possibly a little biased towards biol-
ogy.

Oh yeah, I almost forgot, I’m not an English native speaker (keep that in mind
while reading this book). Still, despite all the book’s (and mine) flaws, I hope
you will find it useful (it is available under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International2 license).

https://julialang.org/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

1 https://julialang.org/
2 https://www.python
.org/
3 https://www.r-project
.org/

2 Why Julia

Before we jump into statistics I think we need to explain why should we use
Julia1 and not, e.g. Python2 or R3.

In other words, am I mad to use Julia for statistics instead of R (a project de-
veloped for statistical computing) or more popular (also in the field of Data
Science) Python?

Well, I hope that I’m just biased. I like Julia because:

1. it’s fast
2. it’s simple
3. it’s a pleasure to write programs with it
4. it’s a less mainstream language
5. it’s free and open source

2.1 Julia is fast

Once upon a time I wrote these three time consuming programs (so hold your
horses, you may not want to run them):� �
file: test.jl
for i in 1:1_000_000_000

if i == 500_000_000
println("Half way through. I counted to 500 million.")

end
end
println("Done. I counted to 1 billion.")� �� �
file: test.py
for i in range(1_000_000_000):

if i == 500_000_000:
print("Half way through. I counted to 500 million.")

print("Done. I counted to 1 billion.")� �� �
file: test.r
for (i in 1:1000000000) {
if (i == 500000000) {

https://julialang.org/
https://www.python.org/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/

6 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4 https://github.com/n
umpy/numpy
5 https://en.wikipedia.o
rg/wiki/C_(programm
ing_language)

6 https://en.wikipedia.o
rg/wiki/%22Hello,_Wo
rld!%22_program

7 https://en.wikipedia.o
rg/wiki/Java_(progra
mming_language)

print("Half way through. I counted to 500 million.")
}

}
print("Done. I counted to 1 billion.")� �

Note: Python and Julia allow to write numbers either like this: 1000, or like that
1_000. The latter form uses _ to separate thousands, somore typing, but it is more
legible.

Each program counts to 1 billion (1 with 9 zeros). Once it is half way through
it displays an info on the screen and when it is done counting it prints another
message.

The execution times of the scripts onmy few-years old laptop (the specification
is not that important):

1. Julia: ~1.5 [sec]
2. R: ~33 [sec]
3. Python3: ~50 [sec]

Granted, it’s not a proper benchmark, and e.g. Python’s numpy4 library runs
with the speed of C5 (so a bit faster than Julia). Nevertheless, the code that
I write in Julia is consistently ~5-10 times faster than the code I write in the
other two programming languages. This is especially evident when running
computer simulations like the ones you may find in this book, still, it is just a
subjective feeling.

Fun fact: A human being would likely need more than 32 years to count to 1
billion. Test yourself and show why. Hint: try to estimate for how long you are
alive [in seconds].

2.2 Julia is simple

What I mean by Julia’s simplicity is its nice, friendly and terse syntax.

For instance to write a simple Hello world6 program all I have to do is to type:� �
println("Hello World!")� �
then save and run the file.

For comparison a similar program in Java7 (a popular programming language)
looks something like:

https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)

WHY JULIA 7

8 https://survey.stackov
erflow.co/2022/#sectio
n-most-loved-dreaded
-and-wanted-program
ming-scripting-and-m
arkup-languages

9 https://forem.julialan
g.org/ifihan/interoper
ability-in-julia-1m26

10 https://julialang.org/

� �
// file: HelloWorld.java
class HelloWorld {

public static void main(String args[]) {
System.out.println("Hello World");

}
}� �
For me too much boilerplate code. The code that I don’t want to type, read or
process in my head. Additionally, in general a Java’s code will probably not
run faster than its Julia’s counterpart. Moreover, the difference in lengths may
be even greater for more complicated programs.

2.3 Pleasure to write

According to this stack overflow’s survey8 Julia got one of the best loved/-
dreaded ratio among the examined programming languages.

This is also true forme. I likewriting programs in Julia (hopefully sowill you).

2.4 Not mainstream

Not being ‘a mainstream programming language’ got its drawbacks (missing
packages or community support, etc.). Luckily, Julia is big andmature enough,
it seems to be growing at a good pace, and got a pretty nice interoperability9

with other programming languages.

Moreover, not being amainstream language is like an opportunity, a gap to fill,
a venue to explore (hence this book).

2.5 Julia is free

Julia is a free and open source programming language as stated on its official
website10:

Julia is an open source project with over 1,000 contributors. It is made available
under the MIT license. The source code is available on GitHub.

OK, enough preaching, time for our first date with Julia.

https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://forem.julialang.org/ifihan/interoperability-in-julia-1m26
https://julialang.org/

1 https://benlauwens.g
ithub.io/ThinkJulia.jl/l
atest/book.html
2 https://learnxinymin
utes.com/docs/julia/
3 https://www.youtub
e.com/watch?v=4igzy3
bGVkQ

4 https://julialang.org/

5 https://en.wikipedia.o
rg/wiki/Terminal_emu
lator

6 https://www.julia-vsc
ode.org/docs/dev/getti
ngstarted/#Installatio
n-and-Configuration-1

3 Julia - first encounter

Before we begin a warning. This book is not intended to be a comprehensive
introduction to Julia programming. If you are looking for one try, e.g. Think
Julia1. On the other hand, if the above-mentioned book is too much for you,
and all you want is a short introduction see learn Julia in Y minutes2. For a
video introduction try, e.g. A Gentle Introduction to Julia3.

Still, regarding the current book, I think we need to cover some selected basics
of the language in order to use it later. The rest of it we will catch ‘on the fly’.
Without further ado let’s get our hands dirty.

3.1 Installation

In order to use Julia we need to install it first. So, now is the time to go to
julialang.org4, click ‘Download’ and choose the version suitable for your ma-
chine’s OS.

To check the installation open the Terminal5 and type:� �
julia −−version� �
When I wrote those words the first time I used Julia version ~1.8, currently I’m
using:� �
VERSION� �
1.10.7

running on a Gnu/Linux operating system. Keep that in mind, cause some-
times it may make a difference, e.g. reading the contents of a file (file path)
may be OS specific.

At the bottom of the Julia’s web page you will find ‘Editors and IDEs’ section
presenting the most popular editors that will enable you to effectively write
and execute pieces of Julia’s code.

For starters I would go with Visual Studio Code6 a popular, user friendly code
editor for Julia. In the link above you will find the installation and configura-
tion instructions for the editor.

https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://learnxinyminutes.com/docs/julia/
https://learnxinyminutes.com/docs/julia/
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://www.youtube.com/watch?v=4igzy3bGVkQ
https://julialang.org/
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Terminal_emulator
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-Configuration-1

10 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

7 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch03

From now on you’ll be able to use it interactively (to run Julia code from this
book).

All You need to do is to create a file, e.g. chapter03.jl (or open that file from the
code snippets7), type the code presented in this chapter and run it by marking
the code with your mouse and pressing Ctrl+Enter.

3.2 Language Constructs

Let’s start by looking at some language features, namely:

1. Variables
2. Functions
3. Decision making
4. Repetition

3.3 Variables

The way I see it a variable is a box to store some value.

Type� �
x = 1� �
mark it (highlight it with a mouse) and run by pressing Ctrl+Enter.

This creates a variable (an imaginary box) named x (x is a label on the box)
that contains the value 1. The = operator assigns 1 (right side) to x (left side)
[puts 1 into the box].

Note: Spaces around mathematical operators like = are usually not necessary.
Still, they improve legibility of your code.

Now, somewhat below type and execute� �
x = 2� �
Congratulations, now the value stored in the box (I mean variable x) is 2 (the
previous value is gone).

Sometimes (usually I do this inside of functions, see Section 3.4) you may see
variables written like that

https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03

JULIA - FIRST ENCOUNTER 11

8 https://en.wikipedia.o
rg/wiki/Integer
9 https://en.wikipedia.o
rg/wiki/Floating-point
_arithmetic

� �
z::Int = 4� �
or� �
zz::Float64 = 4.4� �
The :: is a type declaration. Here by using ::Int you promise Julia that you
will store only integers8 (like: …, -1, 0, 1, …) in this box. Whereas by typing
::Float64 you declare to place only floats9 (like: …, 1.1, 1.0, 0.0, 2.2, 3.14, …) in
that box.

Note: You can either explicitly declare a type (with ::) or let Julia guess it (when
it’s not declared, like in the case of x above). In either situation you can check the
type of a variable with typeof function, e.g. typeof(x) or typeof(zz).

3.3.1 Optional type declaration

In Julia type declaration is optional. Youdon’t have to do this, Juliawill figure
out the types anyway. Still, sometimes it is worth to declare them (explanation
in a moment). If you decide to do so, you should declare a variable’s type only
once (the time it is first created and initialized with a value).

If you use a variable without a type declaration then you can freely reassign to
it values of different types.

Note: In the code snippet below # and all the text to the right of it is a comment,
the part that is ignored by a computer but read by a human.� �

a = 1 # type is not declared
a = 2.2 # can assign a value of any other type
the "Hello" below is a string (a text in a form readable by Julia)
a = "Hello"� �
But you cannot assign (to a variable) a value of a different type than the one
you declared (you must keep your promises). Look at the code below.

This is OK.� �
b::Int = 1 # type integer declared
b = 2 # value of type integer delivered� �
But this is not OK (it’s wrong! it’s wroooong!).

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic

12 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

10 https://docs.julialang
.org/en/v1/base/math
/#math-ops
11 https://docs.julialang
.org/en/v1/manual/stri
ngs/#man-concatenati
on

12 https://discourse.juli
alang.org/t/learning-jul
ia-for-scientists-who-a
re-beginning-program
mers/108638/42
13 https://en.wikipedia
.org/wiki/Integrated_d
evelopment_environme
nt

� �
c::Int = 1 # type integer declared
c = 3.3 # broke the promise, float delivered, it will produce an error
c = 3.1 # again, broke the promise, float delivered, expect error� �
Now a question arises. Why would you want to use a type declaration (like
::Int or ::Float64) at all?

In general you put values into variables to use them later. Sometimes, you
forget what you placed there and may get an unexpected result (it may even
go unnoticed for some time). For instance it makes more sense to use integer
instead of string for some operations (e.g. I may wish to multiply 3 by 3 not
"three" by "three").� �
x = 3
x ∗ x # works as you intended� �
9� �
x = "three"
x ∗ x # the result may be surprising� �
threethree

Note: Julia gives you a standard set of mathematical operators, like addition (+),
subtraction (−), multiplication (∗), division (/) and more (see the docs10).

The latter is an example of a so called string concatenation11, it may be useful
(as we will see later in this book), but probably it is not what you wanted.

To avoid such unexpected events (especially if instead of ∗ you use your own
function, see Section 3.4) you would like a guarding angel that watches over
you. This is what Julia does when you require it by using type declarations
(for now you need to take my word for it).

Moreover, declaring types sometimesmaymake your code run faster (although
rather rarely12).

Additionally, some IDEs13 workbetter (improved code completions, andhints)
when you place type declarations in your code.

Personally, I like to use type declarations in my own functions (see the upcoming
Section 3.4) to help me reason what they do. At first I write functions without types
at all (it’s easier that way). Once I got them running I add the types to them (it us
useful for future reference, code maintenance, etc.).

https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/base/math/#math-ops
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-beginning-programmers/108638/42
https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-beginning-programmers/108638/42
https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-beginning-programmers/108638/42
https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-beginning-programmers/108638/42
https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-beginning-programmers/108638/42
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

JULIA - FIRST ENCOUNTER 13

14 https://docs.julialang
.org/en/v1/manual/va
riables/#man-allowed
-variable-names
15 https://docs.julialang
.org/en/v1/manual/va
riables/#Stylistic-Conve
ntions
16 https://en.wikipedia
.org/wiki/Camel_case

3.3.2 Meaningful variable names

Name your variables well. The variable names I used before are horrible (mea
culpa, mea culpa, mea maxima culpa). We use named variables (like x = 1) in-
stead of ‘loose’ variables (you can type 1 alone in a script file and execute that
line) to use them later.

You can use them later in time (reading and editing your code tomorrow or
next month/year) or in space (using it 30 or 300 lines below). If so, the names
need to be memorable (actually just meaningful will do :D). So whenever pos-
sible use: studentAge = 19, bookTitle = "Dune" (grammatical correctness is not
that important) instead of x = 19, y = "Dune".

You may want to check Julia’s Docs for the allowed variable names14 and the
recommended stylistic conventions15 (for now, always start with a small letter,
and use alphanumeric characters from the Latin alphabet). Personally, I prefer
to use camelCaseStyle16 so this is what you’re gonna see here.

3.3.3 Floats comparisons

Be careful with = sign. In mathematics = means equal to and ≠ means not equal
↪→ to. In programming = is usually an assignment operator (see Section 3.3
before). If you want to compare for equality you should use == (for equal to)
and (!= for not equal to), examples:� �
1 == 1� �
true� �
2 == 1� �
false� �
2.0 != 1.0� �
true� �
comparing float (1.0) with integer (1)
1.0 != 1� �
false� �
comparing integer (2) with float (2.0)
2 == 2.0� �

https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-names
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

14 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

17 https://stackoverflo
w.com/questions/8604
196/why-0-1-3-0-3

18 https://docs.julialang
.org/en/v1/manual/ty
pes/
19 https://en.wikipedia
.org/wiki/Floating-poi
nt_arithmetic
20 https://en.wikipedia
.org/wiki/Integer
21 https://en.wikipedia
.org/wiki/String_(co
mputer_science)
22 https://en.wikipedia
.org/wiki/Boolean_da
ta_type

true

Be careful though because the comparisons of two floats are sometimes tricky,
e.g.� �
(0.1 ∗ 3) == 0.3� �
false

The problem here is not Julia (go ahead, try (0.1 ∗ 3) == 0.3 in another pro-
gramming language), but computers in general. The result is false since some
floats cannot be represented exactly as binary numbers (used internally by a
computer), just like the fraction 1

3 cannot be exactly represented in decimal nu-
meral system (1

3 = 0.333…). If you are interested in more technical details see
this StackOverflow’s thread17. Anyway, this is how my computer sees 0.1 ∗ 3:� �
0.1 ∗ 3� �
0.30000000000000004

and 0.3� �
0.3� �
0.3

The same caution applies to other comparison operators, like:

• x > y (x is greater than y),
• x >= y (x is greater than or equal to y),
• x < y (x is less than y),
• x <= y (x is less than or equal to y).

Wewill see how to deal with the lack of precision in comparisons later (see Section 3.8.2).

3.3.4 Other types

There are also other types (see Julia’s Docs18), but we will use mostly those
mentioned in this chapter, i.e.:

• floats19
• integers20
• strings21

https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://stackoverflow.com/questions/8604196/why-0-1-3-0-3
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/types/
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean_data_type

JULIA - FIRST ENCOUNTER 15

23 https://docs.julialang
.org/en/v1/manual/stri
ngs/
24 https://docs.julialang
.org/en/v1/manual/stri
ngs/#man-characters

25 https://docs.julialang
.org/en/v1/manual/ma
thematical-operations/
#Boolean-Operators

• booleans22

The briefly aforementioned strings contain text of any kind. They are denoted
by (optional type declaration) ::String and you type them within double quo-
tationmarks ("any text"). If you ever want to place " in a string you need to use
\ (backslash) before it [otherwise Julia will terminate the string on the second
" it encounters and throw an error (because it will be confused by the remain-
ing, stray, characters)]. Moreover, if you wish the text to be displayed in the
next line (e.g. in a figure’s title like the one in Section 4.7.3) you should place
\n in it. For instance:� �
title = "I enjoy reading\n\"Title of my favorite book\"."
println(title)� �
Displays:� �
I enjoy reading
"Title of my favorite book".� �
on the screen.

A string is composed of individual characters (d’ooh!). An individual charac-
ter (type ::Char) is enclosed between single quotation marks. For instance, 'a',
'b', 'c', …, 'z' (also uppercase) are all individual characters. Whenever you
want to type a single character you got a choice, either use 'a' (single Char) or
"a" (String composed of one Char). But when typing two or more characters
that are ‘glued’ together you must use double quotations ("ab"). In the rest
of the book we will focus mostly on strings, still, a bit more knowledge never
hurt anyone (or did it?). In Solution to exercise 5 from Section 5.8.5, we will
see how to easily generate a complete alphabet (or a part of it, if you ever need
one) with Chars. If you want to know more about the Strings23 and Chars24
just click the links to the docs that are to be found in this sentence.

The last of the earlier referenced types (boolean) is denoted as ::Bool (note that
in Julia types’ names by convention startwith a capital letter) and can take only
two values: true or false (see the results of the comparison operations above in
Section 3.3.3). Bools are often used in decisionmaking in our programs (see the
upcoming Section 3.5) and can be used with a small set of logical operators25
like AND (&&)� �
&& returns true only if both values are true
those return false:
true && false
false && true
false && false

https://docs.julialang.org/en/v1/manual/strings/
https://docs.julialang.org/en/v1/manual/strings/
https://docs.julialang.org/en/v1/manual/strings/
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/strings/#man-characters
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-Operators

16 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

this returns true:
true && true� �
true

OR (||)� �
|| returns true if any value is true
those return true:
true || false
false || true
true || true
this returns false:
false || false� �
false

and NOT (!)� �
! flips the value to the opposite
returns false: !true
returns true
!false� �
true

3.3.5 Collections

Not only do variables may store a single value but they can also store their col-
lections. The collection types that we will discuss here are Vector (technically
Vector is a one dimensional Array but don’t worry about that now), Array and
struct (it is more like a composite type, but again at that moment we will not
be bothered by that fact).

3.3.6 Vectors� �
myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]� �
[3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

Here I declared a variable that stores my mock grades.

The variable type is Vector of numbers (each of type Float64, run typeof(myMathGrades
↪→) to check it). I could have declared its type explicitly as ::Vector{Float64}.
Instead I decided to let Julia figure it out.

JULIA - FIRST ENCOUNTER 17

26 https://en.wikipedia
.org/wiki/Rectangular_
cuboid
27 https://en.wikipedia
.org/wiki/Cube

28 https://docs.julialang
.org/en/v1/base/math
/#Base.range
29 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.collect-Tup
le%7BType,%20Any%7
D

You can think of a vector as a rectangular cuboid26 box with drawers (smaller
cube27 shaped boxes). The drawers are labeled with consecutive numbers (in-
dices) starting at 1 (we will get to that in a moment). The variable contains 7
grades in it, which you can check by typing and executing length(myMathGrades).

You can retrieve a single element of the vector by typing myMathGrades[i] where
i is some integer (the aforementioned index). For instance:� �
myMathGrades[3] # returns 3rd element� �
3.5

or� �
myMathGrades[end] # returns last grade
equivalent to: myMathGrades[7], but here I don't have to count elements� �
3.0

Be careful though, if You type a non-existing index like myMathGrades[−1], myMathGrades
↪→[0] or myMathGrades[10]youwill get an error (e.g. BoundsError: attempt to access
↪→ 7−element Vector{Float64} at index [0]).

You can get a slice (a part) of the vector by typing� �
myMathGrades[[2, 5]] # returns Vector with 2nd, and 5th element� �
[3.0, 4.0]

or� �
myMathGrades[[2, 3, 4]] # returns Vector with 2nd, 3rd, and 4th element� �
[3.0, 3.5, 2.0]

or simply� �
myMathGrades[2:4] # returns Vector with three grades (2nd, 3rd, and 4th)
the slicing is [inclusive:inclusive]� �
[3.0, 3.5, 2.0]

The 2:4 is Julia’s range28 generator, with default syntax start:stop (both of
which are inclusive). Assume that under the hood it generates a vector (check

https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Rectangular_cuboid
https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Cube
https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D
https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%20Any%7D

18 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

it by using collect29 function, e.g, just run collect(2:4)). So, it gives us the
same result as writing myMathGrades[[2, 3, 4]] by hand. However, the range
syntax is more convenient (less typing especially for broad ranges). Now, let’s
say I want to print every other grade out of 100 grades, then I can go with
oneHunderedGrades[1:2:end] and voila, a magic happened thanks to the start:step
↪→:stop syntax (collect(1:2:end) returns a vector of indices like [1, 3, 5, 7, ...,
↪→ 97, 99]).

Interestingly, you can also choose elements of a vector by using Bools.� �
boolIndices = [true, false, true, false, true, false, true]� �
Bool[1, 0, 1, 0, 1, 0, 1]

Here, we define a vector composed only of true and false values. The above
are printed in their short form as 1s and 0s, respectively. Now we may use it to
get every other element of myMathGrades (actually every element for which the
index position is true).� �
myMathGrades[boolIndices]� �
[3.5, 3.5, 4.0, 3.0]

The above may not look very useful right now (after all we need to type true
↪→/false for every index there is), but oncewe add a bitmore syntax it becomes
a nice way for data filtering (as we will see in Section 7.5).

One last remark, You can change the elements that are in a vector, e.g. like this:� �
myMathGrades[1] = 2.0
myMathGrades� �
[2.0, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

or like that:� �
myMathGrades[2:3] = [5.0, 5.0]
myMathGrades� �
[2.0, 5.0, 5.0, 2.0, 4.0, 5.0, 3.0]

Again, remember about proper indexing. What you put inside (right side)
should be compatible with indexing (left side), e.g myMathGrades[2:3] = [2.0,
↪→2.0, 2.0] will produce an error (placing 3 numbers to 2 slots).

JULIA - FIRST ENCOUNTER 19

3.3.7 Arrays

A Vector is actually a special case of an Array, a multidimensional structure that
holds data. The most familiar (and useful) form of it is a two-dimensional
Array (also called Matrix). It has rows and columns. Previously, I stored my
math grades in a Vector, but most likely I would like a place to keep my other
grades. Here, I create an array that stores my grades from math (column1)
and chemistry (column2).� �
myGrades = [3.5 3.0; 4.0 3.0; 5.0 2.0]
myGrades� �
3×2 Matrix{Float64}:
3.5 3.0
4.0 3.0
5.0 2.0

I separated the values between columns with a space character and indicated
a new rowwith a semicolon. Typing it by hand is not very interesting, but they
come in handy as we will see later in the book.

Aswith vectors I can use indexing to get specific element(s) from amatrix, e.g.� �
myGrades[[1, 3], 2] # returns second column (rows 1 and 3) as Vector� �
[3.0, 2.0]

or� �
myGrades[:, 2] # returns second column (and all rows)� �
[3.0, 3.0, 2.0]

Above, the : symbol (when placed alone) means all indices in a row.� �
myGrades[1, :] # returns first row (and all columns)� �
[3.5, 3.0]

By analogy, here the : symbol (when placed alone) means all indices in a col-
umn.� �
myGrades[3, 2] # returns a value from third row and second column� �

20 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

2.0

Of course, also Bools may be used for indexing.� �
myGrades[:, [false, true]] # all rows, second column� �
3×1 Matrix{Float64}:
3.0
3.0
2.0

Moreover, we can apply the indexing to replace a particular element in a Matrix.
For instance.� �
myGrades[3, 2] = 5
myGrades� �
3×2 Matrix{Float64}:
3.5 3.0
4.0 3.0
5.0 5.0

or� �
myGrades[1:2, 1] = [5, 5]
myGrades� �
3×2 Matrix{Float64}:
5.0 3.0
5.0 3.0
5.0 5.0

As with a Vector also here you must pay attention to proper indexing.

When dealing with Arrays (or Vectors which are one dimensional arrays) one
needs to be cautious not to change their contents accidentally.

In case of atomic variables the values are assigned/passed as copies (i.e. a new
number 3 is put to the box, the old number in the variable x is unaffected).
Observe.� �
x = 2
y = x # y contains the same value as x
y = 3 # y is assigned a new value, x is unaffected

(x, y)� �

JULIA - FIRST ENCOUNTER 21

30 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Tuples

31 https://docs.julialang
.org/en/v1/base/base
/#Base.copy

32 https://docs.julialang
.org/en/v1/base/base
/#struct

(2, 3)

Note: The (x, y) returns Tuple (see Tuple in the docs30) and it is there to show
both x and y in one line. You may think of Tuple as something similar to Vector
but written with parenthesis () instead of square brackets []. Additionally, you
cannot modify elements of a tuple after it was created (so, if you got z = (1, 2,
↪→3), then z[2]will work fine (since it just returns an element), but z[2] = 8will
produce an error). Technically speaking, you could just type x, y and run the
line to get a tuple (test it out), but I prefer to use parenthesis to be explicit.

However, the arrays are assigned/passed as references.� �
xx = [2, 2]
yy = xx # yy refers to the same box of drawers as xx
yy[1] = 3 # new value 3 is put to the first drawer of the box pointed by yy

both xx, and yy are changed, cause both point at the same box of drawers
(xx, yy)� �
([3, 2], [3, 2])

As stated in the comments to the code snippet above, here both xx and yy vari-
ables point at (reference to) the same box of drawers (imagine the same box
of drawers got two labels xx and yy stuck to it next to each other). So, when
we change a value in one drawer, then both variables reflect the change. If we
want to avoid that we can, e.g. make a copy31 of the Vector/Array like so:� �
xx = [2, 2]
yy refers to a different box of drawers
with the same (copied) numbers inside
yy = copy(xx)
yy[1] = 3 # this does not affect xx

(xx, yy)� �
([2, 2], [3, 2])

3.3.8 Structs

Another Julia’s type worth mentioning is struct32. It is a composite type (so it
contains other type(s) inside).

https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/manual/functions/#Tuples
https://docs.julialang.org/en/v1/base/base/#Base.copy
https://docs.julialang.org/en/v1/base/base/#Base.copy
https://docs.julialang.org/en/v1/base/base/#Base.copy
https://docs.julialang.org/en/v1/base/base/#struct
https://docs.julialang.org/en/v1/base/base/#struct
https://docs.julialang.org/en/v1/base/base/#struct

22 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

33 https://docs.julialang
.org/en/v1/base/numb
ers/#Base.Rational

Let’s say I want to have a thing that resembles fractions that we know from
mathematics. It should allow to store the data for numerator and denominator
(𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟). Let’s use struct for that� �
struct Fraction

numerator::Int
denominator::Int

end

fr1 = Fraction(1, 2)
fr1� �
Fraction(1, 2)

Note: By convention Structs’ names start with a capital letter.

If I ever wanted to get a component of the struct I can use the dot syntax, like
so� �
fr1.numerator� �
1

Note: If you type fr1. and press TAB key then you should see a hint with the
available field names. You may choose one with arrow keys and confirm it with
Enter key.

or� �
fr1.denominator� �
2

Of course, as you probably have guessed, there is no need to define your own
type for fraction since Julia is already equipped with one. It is called Ratio-
nal33. For convenience the fraction is written as� �
1//2 # equivalent to: Rational(1, 2)� �
1//2

Notice the double slash character (//).

https://docs.julialang.org/en/v1/base/numbers/#Base.Rational
https://docs.julialang.org/en/v1/base/numbers/#Base.Rational
https://docs.julialang.org/en/v1/base/numbers/#Base.Rational

JULIA - FIRST ENCOUNTER 23

34 https://en.wikipedia
.org/wiki/Verb
35 https://en.wikipedia
.org/wiki/Noun

36 https://en.wikipedia
.org/wiki/Standard_str
eams#Standard_output
_(stdout)

37 https://en.wikiped
ia.org/wiki/Function
_(mathematics)
38 https://en.wikipedia
.org/wiki/Rectangle#Fo
rmulae

39 https://en.wikipedia
.org/wiki/Real_number

In general, structs areworth knowing. A lot of libraries (see Section 3.7) define
their own struct objects and wemaywant to extract their content using the dot
syntax (as we probably sometimes will in the upcoming sections).

OK, enough about the variables, time to meet functions.

3.4 Functions

Functions are doers, i.e encapsulated pieces of code that do things for us. Op-
timally, a function should be single minded, i.e. doing one thing only and do-
ing it well. Moreover since they do stuff their names should contain verbs34
(whereas variables’ names should be composed of nouns35).

We already met one of many Julia’s built in functions, namely println (see Sec-
tion 2.2). As the name suggests it prints something (like a text) to the screen
(more precisely standard output36).

3.4.1 Mathematical functions

We can also define some functions on our own:� �
function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real

return lenSideA ∗ lenSideB
end� �
getRectangleArea (generic function with 1 method)

Here I declared Julia’s version of amathematical function37. It is called getRectangleArea
↪→ and it calculates (surprise, surprise) the area of a rectangle38.

To do that I used the keyword function. The function keyword is followed by
the name of the function (getRectangleArea). Inside the parenthesis are argu-
ments of the function. The function accepts two arguments lenSideA (length of
one side) and lenSideB (length of the other side) and calculates the area of a
rectangle (by multiplying lenSideA by lenSideB). Both lenSideA and lenSideB are
of type Real. It is Julia’s representation of a real number39, it encompasses (it’s
kind of a supertype), among others, Int and Float64 that we encountered be-
fore. The ending of the first line,)::Real, signifies that the function will return
a value of type Real. The stuff that function returns is preceded by the return
keyword. The function ends with the end keyword.

Note: A Julia’s function does not need the return keyword since it returns the
result of its last expression. Still, I prefer to be explicit.

https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Rectangle#Formulae
https://en.wikipedia.org/wiki/Rectangle#Formulae
https://en.wikipedia.org/wiki/Rectangle#Formulae
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number

24 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

40 https://en.wikipedia
.org/wiki/Square#Per
imeter_and_area

Time to run our function and see how it works.� �
getRectangleArea(3, 4)� �
12� �
getRectangleArea(1.5, 2)� �
3.0

Note: In some other languages, e.g. Python, you could use the function like:
getRectangleArea(3, 4), getRectangleArea(lenSideA=3, lenSideB=4) or getRectangleArea
↪→(lenSideB=4, lenSideA=3). However, for performance reasons (and perhaps
due to its Lisp heritage) Julia’s functions accept arguments in a positional man-
ner. Therefore, here you may only use getRectangleArea(3, 4) form. Internally,
the first argument (3) will be assigned to the local variable lenSideA and the sec-
ond (4) to the local variable lenSideB inside the getRectangleArea function. Keep
that in mind since the order of the arguments may sometimes make a difference
(e.g. if getRectangleArea relied on division instead of multiplication).

Hmm, OK, I got getRectangleArea and what if I need to calculate the area of a
square40. You got it.� �
function getSquareArea(lenSideA::Real)::Real

return getRectangleArea(lenSideA, lenSideA)
end� �
getSquareArea (generic function with 1 method)

Note: The argument (lenSideA) of getSquareArea is only known inside the func-
tion. Another function can use the same name for its arguments and it will not
collide with this one. For instance, getRectangleArea(lenSideA::Real, lenSideB
↪→::Real) will receive the same number twice, which getSquareArea knows as
lenSideA, but getRectangleArea will see only the numbers (it will receive their
copies) and it will name them lenSideA and lenSideB for its own usage.

Here I can either write its body from scratch (return lendSideA ∗ lenSideA) or
reuse (as I did) our previously defined getRectangleArea. Lesson to be learned
here, functions can use other functions. This is especially handy if those inner
functions are long and complicated. Anyway, let’s see how it works.� �
getSquareArea(3)� �

https://en.wikipedia.org/wiki/Square#Perimeter_and_area
https://en.wikipedia.org/wiki/Square#Perimeter_and_area
https://en.wikipedia.org/wiki/Square#Perimeter_and_area

JULIA - FIRST ENCOUNTER 25

9

Appears to be working just fine.

Aquick reference to the topicwe discussed in Section 3.3.1. Here typing getRectangleArea
↪→("three", "three") will produce an error. Now, I can spot it right away, read the
error’s message and based on that correct my code so the result is in line with my
expectations

3.4.2 Functions with generics

Now, let’s say I want a function getFirstElt that accepts a vector and returns its
first element (vectors and indexing were briefly discussed in Section 3.3.5).� �
works fine for non−empty vectors
function getFirstElt(vect::Vector{Int})::Int

return vect[1]
end� �
It looks OK (test it, e.g. getFirstElt([1, 2, 3]). However, the problem is that it
works only with integers (or maybe not, test it out). How tomake it workwith
any type, like getFirstElt(["Eve", "Tom", "Alex"]) or getFirstElt([1.1, 2.2, 3.3])
↪→?

One way is to declare separate versions of the function for different types of
inputs, i.e.� �
function getFirstElt(vect::Vector{Int})::Int

return vect[1]
end

function getFirstElt(vect::Vector{Float64})::Float64
return vect[1]

end

function getFirstElt(vect::Vector{String})::String
return vect[1]

end� �
getFirstElt (generic function with 3 methods)

Note: The function’s name is exactly the same in each case. Julia will choose the
correct version (aka method, see the output of the code snippet above) based on
the type of the argument (vect) send to the function, e.g. getFirstElt([1, 2, 3])
↪→, getFirstElt([1.1, 2, 3.0]), and getFirstElt(["a", "b", "c"]) for the three
versions above, respectively.

26 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

41 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.first

But that is too much typing (I retyped a few times virtually the same code).
The other way is to use no type declarations.� �
function getFirstEltVer2(vect)

return vect[1]
end� �
It turns out that you don’t have to declare function types in Julia (just like in
the case of variables, see Section 3.3.1) and a function may work just fine.

Still, a die hard ‘typist’ (if I may call a person this way) would probably use so
called generic types, like:� �
function getFirstEltVer3(vect::Vector{T})::T where T

return vect[1]
end� �
Here we said that the vector is composed of elements of type T (Vector{T}) and
that the function will return type T (see)::T). By typing where T we let Julia
know that T is our custom type that we just made up and it can be any Julia’s
built in type whatsoever (but what it is exactly will be determined once the
function is used). We needed to say where T otherwise Julia would throw an
error (since it wouldn’t be able to find its own built in type T). Anyway, we
could replace T with any other letter (or e.g. two letters) of the alphabet (A, D,
or whatever) and the code would still work.

One last remark, it is customary to write generic types with a single capital
letter. Notice that in comparison to the function with no type declarations
(getFirstEltVer2) the version with generics (getFirstEltVer3) is more informa-
tive. You know that the function accepts a vector of some elements, and you
know that it returns a value of the same type as the elements that build that
vector.

Of course, that last function we wrote for fun (it was fun for me, how about
you?). In reality Julia already got a function with a similar functionality (see
Base.first41).

Note: Usually functions from Base package, like Base.first mentioned above,
may be used in a shorter form (without the prefix), i.e. this: first([1, 2, 3, 4])
↪→.

Anyway, as I wrote before if you don’t want to use types then don’t, Julia gives
you a choice. When I begun to write my first computer programs, I preferred
to use programming languages that didn’t require types. However, nowadays
I prefer to use them for the reasons similar to those described in Section 3.3.1
so be tolerant and bear with me.

https://docs.julialang.org/en/v1/base/collections/#Base.first
https://docs.julialang.org/en/v1/base/collections/#Base.first
https://docs.julialang.org/en/v1/base/collections/#Base.first

JULIA - FIRST ENCOUNTER 27

3.4.3 Functions operating on structs

Functionsmay also work on custom types like the ones createdwith struct. Do
you still remember our Fraction type from Section 3.3.8? I hope so.

Let’s say I want to define a function that adds two fractions. I can proceed like
so� �
function add(f1::Fraction, f2::Fraction)::Fraction

newDenom::Int = f1.denominator ∗ f2.denominator
f1NewNom::Int = newDenom / f1.denominator ∗ f1.numerator
f2NewNom::Int = newDenom / f2.denominator ∗ f2.numerator
newNom::Int = f1NewNom + f2NewNom
return Fraction(newNom, newDenom)

end

add(Fraction(1, 3), Fraction(2, 6))� �
Fraction(12, 18)

Note: The variables newDenom, f1NewNom, f2NewNom, newNom are local, e.g. they are
created and exist only inside the function when it is called (like here with add(
↪→Fraction(1, 3), Fraction(2, 6))) and do not affect the variables outside the
function even if they happened to have the same names.

Works correctly, but the addition algorithm is not optimal (for now you don’t
have to worry toomuch about the function’s hairy internals). Luckily the built
in Rational type (Section 3.3.8) is more polished. Observe� �
equivalent to: Rational(1, 3) + Rational(2, 6)
1//3 + 2//6� �
2//3

Much better (12
18 = 12/6

18/6 = 2
3). Of course also other operations like subtraction,

multiplication and division work for Rational.

We will meet some functions operating on structs when we use custom made
libraries like HypothesisTests (abbreviated Ht), e.g. Ht.pvalue that works on the
object (struct) returned by Ht.OneWayANOVATest (see the upcoming Section 5.5).
Again, for now don’t worry about it too much.

3.4.4 Functions modifying arguments

Previously (see Section 3.3.5) we said that we can change elements of a vec-
tor. Sometimes even unintentionally, because, e.g. we may forget that Arrays
↪→s/Vectors are assigned/passed by references (as mentioned in Section 3.3.7).

28 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

� �
function wrongReplaceFirstElt(

ints::Vector{Int}, newElt::Int)::Vector{Int}
ints[1] = newElt
return ints

end

xx = [2, 2]
yy = wrongReplaceFirstElt(xx, 3)

unintentionally we changed xx defined outside a function
(xx, yy)� �
([3, 2], [3, 2])

Let’s try to re-write the function that changes the first element improving upon
it at the same time.� �
the function works fine for non−empty vectors
function replaceFirstElt!(vect::Vector{T}, newElt::T) where T

vect[1] = newElt
return nothing

end� �
Note: The function’s name ends with ! (exclamation mark). This is one of the
Julia’s conventions to mark a function that modifies its arguments.

In general, you should try to write a function that does not modify its argu-
ments (as modification often causes errors, especially in big programs). How-
ever, suchmodifications are sometimes useful, therefore Julia allows you to do
so, but you should always be explicit about it. That is why it is customary to
end the name of such a function with ! (exclamation mark draws attention).

Additionally, observe that T can be of any type, butwe require newElt to be of the
same type as the elements in vect. Moreover, since we modify the arguments
we wrote return nothing (to be explicit we do not return a thing) and removed
returned type after the function’s name, i.e. we used [) where T instead of)::
↪→Vector{T} where T].

Let’s see how the function works.� �
x = [1, 2, 3]
y = replaceFirstElt!(x, 4)
(x, y)� �

JULIA - FIRST ENCOUNTER 29

42 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.push!

([4, 2, 3], nothing)

Let me finish this subsection by mentioning a classical example of a built-in
function that modifies its argument. The function is push!42. It adds elements
to a collection (e.g. Arrays, or Vectors). Observe:� �
xx = [] # empty vector
push!(xx, 1, 2) # now xx is [1, 2]
push!(xx, 3) # now xx is [1, 2, 3]
push!(xx, 4, 5) # now xx is [1, 2, 3, 4, 5]� �
I mentioned it since that was my favorite way of constructing a vector (to start
with an empty vector and add elements one by one with a for loop that wewill
meet in Section 3.6.1) back in the daywhen I startedmy programming journey.
Nowadays I do it a bit differently, but I thought it would be good to mention it
in case you find it useful while solving some exercises from this book.

3.4.5 Side Effects vs Returned Values

Notice that so far we encountered two types of Julia’s functions:

• those that are used for their side effects (like println)
• those that return some results (like getRectangleArea)

The difference between the two may not be clear while we use the interactive
mode. To make it more obvious let’s put them in the script like so:� �
file: sideEffsVsReturnVals.jl

you should define a function before you call it
function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real

return lenSideA ∗ lenSideB
end

println("Hello World!")

getRectangleArea(3, 2) # calling the function� �
After running the code from terminal:� �
cd folder_with_the_sideEffsVsReturnVals.jl
julia sideEffsVsReturnVals.jl� �

https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!

30 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

43 https://en.wikipedia
.org/wiki/Standard_str
eams#Standard_output
_(stdout)

44 https://docs.julialang
.org/en/v1/manual/fu
nctions/

45 https://docs.julialang
.org/en/v1/

I got printed on the screen:� �
Hello World!� �
That’s it. I got only one line of output, the rectangle area seems to be missing.
We must remember that a computer does only what we tell it to do, nothing
more, nothing less. Here we said:

• print “Hello World!” to the screen (actually standard output43)
• calculate and return the area of the rectangle (but we did nothing with it)

In the second case the result went into the void (“If a tree falls in a forest and
no one is around to hear it, does it make a sound?”).

If we want to print both pieces of information on the screen we should modify
our script to look like:� �
file: sideEffsVsReturnVals.jl

you should define a function before you call it
function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real

return lenSideA ∗ lenSideB
end

println("Hello World!")

println takes 0 or more arguments (separated by commas)
if necessary arguments are converted to strings and printed
println("Rectangle area = ", getRectangleArea(3, 2), " [cm^2]")� �
Now when we run julia sideEffsVsReturnVals.jl from terminal, we get:� �
Hello World!
Rectangle area = 6 [cm^2]� �
More information about functions can be found, e.g. in this section of Julia’s
Docs44.

If you ever encounter a built in function that you don’t know, you may always
search for it in the docs45 (search box: top left corner of the page).

3.5 Decision Making

In everyday life people have to make decisions and so do computer programs.
This is the job for if ... elseif ... else constructs.

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://docs.julialang.org/en/v1/manual/functions/
https://docs.julialang.org/en/v1/manual/functions/
https://docs.julialang.org/en/v1/manual/functions/
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/

JULIA - FIRST ENCOUNTER 31

3.5.1 If …, or Else …

To demonstrate decision making in action let’s say I want to write a function
that accepts an integer as an argument and returns its textual representation.
Here we go.� �
function turnInt2string(num::Int)::String

if num <= 0
return "zero or less"

elseif num == 1
return "one"

elseif num == 2
return "two"

else
return "three or above"

end
end

(turnInt2string(2), turnInt2string(5)) # a tuple with results� �
("two", "three or above")

The general structure of the construct goes like this:� �
pseudocode, don't run this snippet
if (condition_that_returns_Bool)

what_to_do
elseif (another_condition_that_returns_Bool)

what_to_do
elseif (another_condition_that_returns_Bool)

what_to_do
else

what_to_do
end� �
Asmentioned in Section 3.3.4 Bool type can take one of two values true or false.
The code inside if/elseif clause runs only when the condition is true. You can
have any number of elseif clauses. Only the code for the first true clause runs.
If none of the previous conditions matches (each and every one is false) the
code in the else block is executed. Only if and end keywords are obligatory, the
rest is not, so you may use� �
pseudocode, don't run this snippet
if (condition_that_returns_Bool)

what_to_do
end� �

32 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

or� �
pseudocode, don't run this snippet
if (condition_that_returns_Bool)

what_to_do
else

what_to_do
end� �
or� �
pseudocode, don't run this snippet
if (condition_that_returns_Bool)

what_to_do
elseif (condition_that_returns_Bool)

what_to_do
else

what_to_do
end� �
or� �
pseudocode, don't run this snippet
if (condition_that_returns_Bool)

what_to_do
elseif (condition_that_returns_Bool)

what_to_do
elseif (condition_that_returns_Bool)

what_to_do
else

what_to_do
end� �
or …, never mind, I think you got the point.

Below I place another example of a function using if/elseif/else construct (in
order to remember it better).� �
works fine for non−empty vectors
function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int

if isSortedAsc
return vect[1]

else
sortedVect::Vector{Int} = sort(vect)
return sortedVect[1]

end
end

x = [1, 2, 3, 4]

JULIA - FIRST ENCOUNTER 33

46 https://docs.julialang
.org/en/v1/base/sort/#
Base.sort

47 https://docs.julialang
.org/en/v1/base/collec
tions/#Dictionaries

y = [3, 4, 1, 2]

(getMin(x, true), getMin(y, false))� �
(1, 1)

Here I wrote a function that finds the minimal value in a vector of integers.
If the vector is sorted in the ascending order it returns the first element. If it
is not, it sorts the vector using the built in sort46 function and returns its first
element (this may not be the most efficient method but it works). Note that the else
block contains two lines of code (it could contain more if necessary, and so
could if block). I did this for demonstrative purposes. Alternatively instead
those two lines (in the else block) one could write return sort(vect)[1] and it
would work just fine.

3.5.2 Ternary expression

If you need only a single if ... else in your code, then you may prefer to re-
place itwith ternary operator. Its general form is condition_or_Bool ? result_if_true
↪→ : result_if_false.

Let me rewrite getMin from Section 3.5.1 using ternary expression.� �
function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int

return isSortedAsc ? vect[1] : sort(vect)[1]
end

x = [1, 2, 3, 4]
y = [3, 4, 1, 2]

(getMin(x, true), getMin(y, false))� �
(1, 1)

Much less code, works the same. Still, I would not overuse it. For more than
a single condition it is usually harder to write, read, and process in your head
than the good old if/elseif/else block.

3.5.3 Dictionaries

Dictionaries in Julia47 are a sort of mapping. Just like an ordinary dictionary is
amapping between aword and its definition. Here, we say that themapping is
between key and value. For instance let’s say I want to define an English-Polish
dictionary.

https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/collections/#Dictionaries
https://docs.julialang.org/en/v1/base/collections/#Dictionaries
https://docs.julialang.org/en/v1/base/collections/#Dictionaries

34 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

48 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.get

� �
engPolDict::Dict{String, String} = Dict("one" => "jeden", "two" => "dwa")
engPolDict # the key order is not preserved on different computers� �
Dict{String, String} with 2 entries:
"two" => "dwa"
"one" => "jeden"

Here I defined a dictionary of type Dict{String, String}, so, both key and value
↪→ are of textual type (String). The order of the keys is not preserved (this
data structure cares more about lookup performance and not about the order
of the keys). Therefore, you may see a different order of items after executing
the code on your computer.

If we want to now how to say “two” in Polish I type aDict[key] (if the key is not
there you will get an error), e.g.� �
engPolDict["two"]� �
dwa

To add a new value to a dictionary (or to update the existing value) write
aDict[key] = newVal. Right now the key “three” does not exist in engPolDict so I
would get an error (check it out), but if I type:� �
engPolDict["three"] = "trzy"� �
trzy

Then I create (or update if it was already there) a key-value mapping.

Now, to avoid getting errors due to non-existing keys I can use the built in get48
function. You use it in the form get(collection, key, default), e.g. right now the
word “four” (key) is not in a dictionary so I should get an error (check it out).
But wait, there is get.� �
get(engPolDict, "four", "not found")� �
not found

OK, what anything of it got to do with if/elseif/else and decision making.
The thing is that if you got a lot of decisions to make then probably you will
be better off with a dictionary. Compare

https://docs.julialang.org/en/v1/base/collections/#Base.get
https://docs.julialang.org/en/v1/base/collections/#Base.get
https://docs.julialang.org/en/v1/base/collections/#Base.get

JULIA - FIRST ENCOUNTER 35

49 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Optional-Arg
uments

� �
function translEng2polVer1(engWord::String)::String

if engWord == "one"
return "jeden"

elseif engWord == "two"
return "dwa"

elseif engWord == "three"
return "trzy"

elseif engWord == "four"
return "cztery"

else
return "not found"

end
end

(translEng2polVer1("three"), translEng2polVer1("ten"))� �
("trzy", "not found")

with� �
function translEng2polVer2(engWord::String,

aDict::Dict{String, String} = engPolDict)::String
return get(aDict, engWord, "not found")

end

(translEng2polVer2("three"), translEng2polVer2("twelve"))� �
("trzy", "not found")

Note: Dictionaries like Arrays (see Section 3.3.7) are passed by references

In translEng2polVer2 I used a so called optional argument49 for aDict (aDict::Dict
↪→{String, String} = engPolDict). This means that if the function is provided
without the second argument then engPolDict will be used as its second ar-
gument. If I defined the function as translEng2polVer2(engWord::String, aDict::
↪→Dict{String, String}) then while running the function I would have to write
(translEng2polVer2("three", engPolDict), translEng2polVer2("twelve", engPolDict)).
Of course, I may prefer to use some other English-Polish dictionary (perhaps
the one foundon the internet) like so translEng2polVer2("three", betterEngPolDict
↪→) instead of using the default engPolDict we got here.

In general, the more if ... elseif ... else comparisons you got to do the better off
you are when you use dictionaries (especially that they could be written by someone

https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments

36 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

50 https://docs.julialang
.org/en/v1/manual/co
ntrol-flow/#man-condi
tional-evaluation

51 https://en.wikipedia
.org/wiki/For_loop

52 https://en.wikipedia
.org/wiki/For_loop

53 https://en.wikipedia
.org/wiki/Hip_hip_ho
oray

54 https://docs.julialang
.org/en/v1/base/base
/#Base.@assert

else, you just use them). Still, in the rest of the book we will probably use dictionaries
for data storage and a quick lookup.

OK, enough of that. If you want to know more about conditional evaluation
check this part of Julia’s docs50.

3.6 Repetition

Julia, and computers in general, are good at doing boring, repetitive tasks for
us without a word of complaint (and they do it much faster than we do). Let’s
see some constructs that help us with it.

3.6.1 For loops

A for loop51 is a standard construct present in many programming languages
that does the repetition for us. Its general form in Julia is:� �
pseudocode, do not run this snippet
for i in sequence

do_something_useful
end� �
The loop is enclosed between for and end keywords and repeats some spe-
cific action(s) (# do_something_useful) for every element of a sequence. On each
turnover of a loop consecutive elements of a sequence are referred to by i.

Note: I could have assigned any name, like: j, k, whatever, it would work the
same. Still, i and j are quite common in for loops52.

Let’s say I want a program that will print hip hip hooray53 many times for my
friend that celebrates some success. I can proceed like this.� �
function printHoorayNtimes(n::Int)

@assert (n > 0) "n needs to be greater than 0"
for _ in 1:n

println("hip hip hooray!")
end
return nothing

end� �
Go ahead, run it (e.g. printHoorayNtimes(3)).

Notice two new elements. Here it makes no sense for n to be less than or equal
to 0. Hence, I used @assert54 construct to test it and print an error message

https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Hip_hip_hooray
https://en.wikipedia.org/wiki/Hip_hip_hooray
https://en.wikipedia.org/wiki/Hip_hip_hooray
https://docs.julialang.org/en/v1/base/base/#Base.@assert
https://docs.julialang.org/en/v1/base/base/#Base.@assert
https://docs.julialang.org/en/v1/base/base/#Base.@assert

JULIA - FIRST ENCOUNTER 37

55 https://en.wikipedia
.org/wiki/Arithmetic
_mean

56 https://docs.julialang
.org/en/v1/base/arrays
/#Base.eachindex
57 https://docs.julialang
.org/en/v1/manual/ma
thematical-operations/
#Updating-operators

("n needs to be greater than 0") if it is. The construct is not recommended in
serious programs, but for our quick and dirty approach it should do the trick.
The 1:n is a range similar to the one we used in Section 3.3.6. Here, I used _
instead of i in the example above (to signal that I don’t plan to use it further).

OK, how about another example. You remember myMathGrades, right?� �
myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]� �
Now, since the end of the school year is coming then I would like to know my
average55 (likely this will be my final grade). In order to get that I need to
divide the sum by the number of grades. First the sum.� �
function getSum(nums::Vector{<:Real})::Real

total::Real = 0
for i in 1:length(nums)

total = total + nums[i]
end
return total

end

getSum(myMathGrades)� �
24.0

A few explanations regarding the new bits of code here.

In the arguments list I wrote ::Vector{<:Real}. Which means that each element
of nums is a subtype (<:) of the type Real (which includes integers and floats).
I declared a total and initialized it to 0. Then in for loop I used i to hold num-
bers from 1 to number of elements in the vector (length(nums)). Finally, in the
for loop body I added each number from the vector (using indexing see Sec-
tion 3.3.6) to the total. The total = total + nums[i]means that new total is equal
to old total + element of the vector (nums) with index i (nums[i]). Finally, I re-
turned the total.

The body of the for loop could be improved. Instead of for i in 1:length(nums)
I could have written for i in eachindex(nums) (notice there is no 1:, eachindex is
a built in Julia function, see here56). Moreover, instead of total = total + nums[
↪→i] I could have used total += nums[i]. The += is and update operator57, i.e. a
shortcut for updating old value by adding a new value to it. Take a moment
to rewrite the function with those new forms and test it.

Note: Theupdate operatormust bewritten as accumulator += updateValue (e.g. total
↪→ += 2) and not accumulator =+ updateValue (e.g. total =+ 2). In the latter case
Julia will asign updateValue (+2) as a new value of accumulator [it will interpret
=+ 2 as assign (=) plus/positive two (+2) instead of update (+=) by 2].

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators

38 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

58 https://en.wikipedia
.org/wiki/Arithmetic
_mean

59 https://en.wikipedia
.org/wiki/Celsius

60 https://en.wikipedia
.org/wiki/Fahrenheit
61 https://en.wikipedia
.org/wiki/Fahrenheit#C
onversion_(specific_t
emperature_point)

Alternatively, I can do thiswithout indexing (although for loopswith indexing
are a classical idiom in programming and it is worth to know them).� �
function getSum(nums::Vector{<:Real})::Real

total::Real = 0
for num in nums

total += num
end
return total

end

getSum(myMathGrades)� �
24.0

Here num (I could have used n, i or whatever if I wanted to) takes the value of
each consecutive element of nums and adds it to the total.

OK, and now back to the average58.� �
function getAvg(nums::Vector{<:Real})::Real

return getSum(nums) / length(nums)
end

getAvg(myMathGrades)� �
3.4285714285714284

Ups, not quite 3.5, I’ll better present some additional projects to improve my
final grade.

OK, two more examples that might be useful and will help you master for
loops even better.

Let’s say I got a vector of temperatures in Celsius59 and want to send it to a
friend in the US.� �
temperaturesCelsius = [22, 18.3, 20.1, 19.5]� �
[22.0, 18.3, 20.1, 19.5]

Tomake it easier for him I should probably change it to Fahrenheit60 using this
formula61. I start with writing a simple converting function for a single value
of the temperature in Celsius scale.� �
function degCels2degFahr(tempCels::Real)::Real

return tempCels ∗ 1.8 + 32

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)
https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_point)

JULIA - FIRST ENCOUNTER 39

62 https://docs.julialang
.org/en/v1/manual/st
yle-guide/#bang-conve
ntion

end

degCels2degFahr(0)� �
32.0

Now let’s convert the temperatures in the vector. First I would try something
like this:� �
function degCels2degFahr!(tempsCels::Vector{<:Real})

for i in eachindex(tempsCels)
tempsCels[i] = degCels2degFahr(tempsCels[i])

end
return nothing

end� �
Notice the ! in the function name (don’t remember what it mean? see here62).

Still, this is not good. If I use it (degCels2degFahr!(temperatureCelsius)) it will
change the values in temperaturesCelsius to Fahrenheit which could cause prob-
lems (variable name doesn’t reflect its contents). A better approach is to write
a function that produces a new vector and doesn’t change the old one.� �
function degCels2degFahr(tempsCels::Vector{<:Real})::Vector{<:Real}

result::Vector{<:Real} = zeros(length(tempsCels))
for i in eachindex(tempsCels)

result[i] = degCels2degFahr(tempsCels[i])
end
return result

end� �
degCels2degFahr (generic function with 2 methods)

Now I can use it like that:� �
temperaturesFahrenheit = degCels2degFahr(temperaturesCelsius)� �
[71.6, 64.94, 68.18, 67.1]

First of all, notice that so far I defined two functions named degCels2degFahr.
One of them has got a single value as an argument (degCels2degFahr(tempCels::
↪→Real)) and another a vector as its argument (degCels2degFahr(tempsCels::Vector
↪→{<:Real})). But since I explicitly declared argument types, Julia will know

https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention
https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention

40 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

63 https://docs.julialang
.org/en/v1/base/arrays
/#Base.zeros

64 https://en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Nested_loops

65 https://docs.julialang
.org/en/v1/manual/ar
rays/#man-comprehen
sions

when to use each version based on the function’s arguments (see next para-
graph). The different function versions are called methods (hence the mes-
sage: degCels2degFahr (generic function with 2 methods) under the code snippet
above).

In the body of degCels2degFahr(tempsCels::Vector{<:Real}) first I declare and ini-
tialize a variable that will hold the result (hence result). I do this using built
in zeros63 function. The function returns a new vector with n elements (where
n is equal to length(tempsCels)) filled with, you got it, 0s. The 0s are just place-
holders. Then, in the for loop, I go through all the indices of result (i holds
the current index) and replace each zero (result[i]) with a corresponding
value in Fahrenheit (degCels2degFahr(tempsCels[i])). Here, since I pass a single
value (tempsCels[i]) Julia knows which version (aka method) of the function
degCels2degFahr to use (i.e. this one degCels2degFahr(tempCels::Real)).

For loops can be nested64 (even a few times). This is useful, e.g. when iterating
over every call in an array (we met arrays in Section 3.3.7). We will use nested
loops later in the book (e.g. in Section 6.8.2).

OK, enough for the classic for loops. Let’s go to some built in goodies that
could help us out with repetition.

3.6.2 Built-in Goodies

If the operation you want to perform is simple enough you may prefer to use
some of the Julia’s goodies mentioned below.

3.6.3 Comprehensions

Another useful constructs are comprehensions65.

Let’s say this time I want to convert inches to centimeters using this function.� �
function inch2cm(inch::Real)::Real

return inch ∗ 2.54
end

inch2cm(1)� �
2.54

If I want to do it for a bunch of values I can use comprehensions like so.� �
inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}

https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://docs.julialang.org/en/v1/base/arrays/#Base.zeros
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions

JULIA - FIRST ENCOUNTER 41

66 https://docs.julialang
.org/en/v1/manual/fu
nctions/#man-anony
mous-functions

67 https://en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Comprehensions

68 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.map

69 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.foreach

return [inch2cm(inch) for inch in inches]
end

inches2cms(inches)� �
[25.4, 50.8, 76.2]

On the right I use the familiar for loop syntax, i.e. for sth in collection. On the
left I place a function (namedor anonymous66) that Iwant to use (here inch2cm)
and pass consecutive elements (sth, here inch) to that function. The expression
is surrounded with square brackets so that Julia makes a new vector out of it
(the old vector is not changed).

In general comprehensions are pretty useful, chances are that I’m going to use them a
lot in this book so make sure to learn them (e.g. read their description in the link at the
beginning of this subchapter, i.e. Section 3.6.3 or look at the examples shown here67).

3.6.4 Map and Foreach

Comprehensions are nice, but some people find map68 even better. The exam-
ple above could be rewritten as:� �
inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
return map(inch2cm, inches)

end

inches2cms(inches)� �
[25.4, 50.8, 76.2]

Again, I pass a function (note I typed only its name) as a first argument to map,
the second argument is a collection. Map automatically applies the function to
every element of the collection and returns a new collection. Isn’t this magic.

If you want to evoke a function on a vector just for side effects (since you don’t
need to build a vector and return it) use foreach69. For instance, getSum with
foreach and an anonymous function would look like this� �
function getSum(vect::Vector{<:Real})::Real

total::Real = 0
foreach(x −> total += x, vect) # side effect is to increase total
return total

end

https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Comprehensions
https://docs.julialang.org/en/v1/base/collections/#Base.map
https://docs.julialang.org/en/v1/base/collections/#Base.map
https://docs.julialang.org/en/v1/base/collections/#Base.map
https://docs.julialang.org/en/v1/base/collections/#Base.foreach
https://docs.julialang.org/en/v1/base/collections/#Base.foreach
https://docs.julialang.org/en/v1/base/collections/#Base.foreach

42 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

70 https://docs.julialang
.org/en/v1/manual/fu
nctions/#man-anony
mous-functions

71 https://en.wikibooks
.org/wiki/Introducing_
Julia/Functions#Anon
ymous_functions

72 https://docs.julialang
.org/en/v1/manual/ma
thematical-operations/
#man-dot-operators

getSum([1, 2, 3, 4])� �
10

Here, foreach will perform an action (its first argument) on each element of its
second argument (vect). The first argument (x −> total += x) is an anonymous
function70 that takes some value x and in its body (−> points at the body) adds
x to total (total += x). The x takes each value of vect (second argument).

Note: Anonymous functions will be used quite a bit in this book, so make sure
you understand them (read their description in the link above or look at the ex-
amples shown here71).

3.6.5 Dot operators/functions

Last but not least. I can use a dot operator72. Say I got a vector of numbers and
I want to add 10 to each of them. Doing this for a single number is simple, I
would have just typed 1 + 10. Hmm, but for a vector? Simple as well. I just
need to precede the operator with a . like so:� �
[1, 2, 3] .+ 10� �
[11, 12, 13]

I can do this also for functions (both built-in and written by myself). Notice .
goes before (� �
inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
return inch2cm.(inches)

end

inches2cms(inches)� �
[25.4, 50.8, 76.2]

Isn’t this nice.

OK, the goodies are great, but require some time to get used to them (I suspect
at first you’re gonna use good old for loop syntax). Besides the constructs

https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_functions
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-operators

JULIA - FIRST ENCOUNTER 43

73 https://en.wikipedia
.org/wiki/Library_(co
mputing)

74 https://julialang.org/
packages/
75 https://en.wikipedia
.org/wiki/MIT_License

76 https://docs.julialang
.org/en/v1/stdlib/Pkg/

77 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.sum
78 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/
79 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/#Statistics.mean

described in this section are good for simple operations (don’t try to put too
much stuff into them, they are supposed to be one liners).

In any case choose a construct that you know how to use and that gets the job
done for you, mastering them all will take some time.

Still, in general dot operations are pretty useful, chances are that I’m going to use them
a lot in this book so make sure to understand them.

3.7 Additional libraries

OK, there is one more thing I want to briefly talk about, and it is libraries73
(sometimes called packages).

A library is a piece of code developed by someone else. At the time I’mwriting
these words there are over 10’000 libraries (aka packages) in Julia (see here74)
available under different licenses. If the package is under MIT license75 (a lot
of them are) then basically you may use it freely, but without any warranty.

To install a package you use Pkg76, i.e. Julia’s built in package manager. Click
the link in the previous sentence to see how to do it (be aware that installation
may take some time).

In general there are two ways to use a package in your project:

1. by typing using Some_pkg_name
2. by typing import Some_pkg_name

Personally, I prefer the latter. Actually, I use it in the form import Some_pkg_name
↪→ as Abbreviated_pkg_name (you will see why in a moment).

Let’s see how itworks. Remember the getSum and getAvg functions thatwewrote
ourselves. Well, it turns out Julia got a built-in sum77 and Statistics78 package
got a mean79 function. To use it I type at the top of my file (it is a good practice
to do so):� �
import Statistics as Stats� �
Now I can access any of its functions by preceding themwith Stats (my abbre-
viation) and . like so� �
Stats.mean([1, 2, 3])� �

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://julialang.org/packages/
https://julialang.org/packages/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/base/collections/#Base.sum
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean

44 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

80 https://docs.julialang
.org/en/v1/

2.0

And that’s it. It just works.

Note that if you type import Statistics instead of import Statistics as Stats then
in order to use mean you will have to type Statistics.mean([1, 2, 3]). So in gen-
eral it is a good idea to give some shorter name for an imported package.

Oh yeah, one more thing. In order to know what are the functions in a library
and how to use them you should check the library’s documentation.

OK, enough theory, time for some practice.

3.8 Julia - Exercises

I once heard that in chess you can get only as much as you give. I believe it is
also true for programming (and most likely many other human activities).

So, here are some exercises that you may want to solve to get from this chapter
as much as you can.

Note: Some readers probably will not solve the exercises. They will not want to
(because of the waste of time) or will not be able to solve them (in that case my
apology for the inappropriate difficulty level). Either way, I suggest you read
the tasks’ descriptions and the solutions (and try to understand them). In those
sections I may use, e.g. some language constructs that I will not explain again in
the upcoming chapters.

3.8.1 Exercise 1

Imagine the following situation. You and your friends make a call to order out
a pizza. You got only $50 and you are pretty hungry. But you got a dilemma,
for exactly $50 you can either order 2 pizzas 30 cm in diameter each, or 1 pizza
45 cm in diameter. Which one is more worth it?

Hint: Assume that the pizza is flat and that you are eating its surface.

Hint: You may want to search the documentation80 for Base.MathConstants and use
one of them.

3.8.2 Exercise 2

When we talked about float comparisons (Section 3.3.3) we said to be careful
since

https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/

JULIA - FIRST ENCOUNTER 45

81 https://docs.juliala
ng.org/en/v1/base/ma
th/#Base.round-Tuple
%7BComplex%7B%3C:
AbstractFloat%7D,%20
RoundingMode,%20Ro
undingMode%7D
82 https://docs.juliala
ng.org/en/v1/base/
base/#Base.eps-Tup
le%7BType%7B%3C:
AbstractFloat%7D%7D

83 https://en.wikipedia
.org/wiki/Fizz_buzz

� �
(0.1 ∗ 3) == 0.3� �
false

Write a function with the following signature areApproxEqual(f1::Float64, f2::
↪→Float64)::Bool. It should return truewhen calledwith those numbers (areApproxEqual
↪→(0.1∗3, 0.3)). For the task youmay use round81 with a precision of, let’s say,
16 digits.

Note: Probably there is no point of greater precision than 16 digits since your
machine won’t be able to see it anyway. For technical details see Base.eps82.

3.8.3 Exercise 3

Remember getMin from previous chapter (see Section 3.5.2)� �
function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int

return isSortedAsc ? vect[1] : sort(vect)[1]
end� �
Write getMax with the following signature getMax(vect::Vector{Int}, isSortedDesc
↪→::Bool)::Int use only the elements from previous version of the function
(you should modify them).

3.8.4 Exercise 4

Someone once told me that the simplest interview question for a candidate
programmer is fizz buzz83. If a person doesn’t know how to do that there is
no point of examining them further.

I don’t know if that’s true, but here we go.

Write a program for a range of numbers 1 to 30.

• If a number is divisible by 3 print “Fizz” on the screen.
• If a number is divisible by 5 print “Buzz” on the screen.
• If a number is divisible by 3 and 5 print “Fizz Buzz” on the screen.
• Otherwise print the number itself.

If you feel stuck right now, don’t worry. It sounds difficult, because so far you
haven’t met all the necessary elements to solve it. Still, I believe you can do this
by reading the Julia’s docs or using your favorite web search engine.

Here are some constructs that might be useful to solve this task:

https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:AbstractFloat%7D%7D
https://en.wikipedia.org/wiki/Fizz_buzz
https://en.wikipedia.org/wiki/Fizz_buzz

46 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

84 https://docs.julialang
.org/en/v1/base/math
/#Base.rem
85 https://docs.julialang
.org/en/v1/manual/mi
ssing/#Logical-operato
rs
86 https://docs.julialang
.org/en/v1/manual/mi
ssing/#Control-Flow-a
nd-Short-Circuiting-O
perators
87 https://docs.julialang
.org/en/v1/base/string
s/#Base.string

88 https://docs.julialang
.org/en/v1/base/numb
ers/#BigFloats-and-Big
Ints
89 https://docs.julialang
.org/en/v1/manual/in
tegers-and-floating-poi
nt-numbers/#Integers

• for loop (see Section 3.6.1)
• if/elseif/else (see Section 3.5.1)
• modulo operator or rem function84

• ‘logical and’ (see Section 3.3.4 and this85 and that86 section of Julia’s docs)
• string function87

Youmay use some or all of them. Or perhaps you can come upwith something
else. Good luck.

3.8.5 Exercise 5

I once heard a story about chess.

According to the story the game was created by a Hindu wise man. He pre-
sented the invention to his king who was so impressed that he offered to fulfill
his request as a reward.

• I want nothing but some wheat grains.
• How many?
• Put 1 grain on the first chess field, 2 grains on the second, 4 on the third, 8

on the fourth, and so on. I want the grains that are on the last field.

A laughingly small request, thought the king. Or is it?

Use Julia to answer how many grains are on the last (64th) field.

Hint. If you get a strange looking result, use BigInt88 data type instead of Int89.

3.8.6 Exercise 6

Lastly, to cool down a little write a function getInit that takes a vector of any
type as an argument and returns the vector without its last element.

You may either use the generics (preferred way to solve it, see Section 3.4.2)
or write the function without type declarations (acceptable solution).

Remember about the indexing (see Section 3.3.6). Think (or search for the
answer e.g. in the internet) how to get one but last element of an array.

Usage examples:� �
getInit([1, 2, 3, 4])
output: [1, 2, 3]� �

https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/base/math/#Base.rem
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-Circuiting-Operators
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/strings/#Base.string
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers

JULIA - FIRST ENCOUNTER 47

90 https://en.wikipedia
.org/wiki/Area_of_a_ci
rcle
91 https://docs.julialang
.org/en/v1/base/numb
ers/#Base.MathConsta
nts.pi

92 https://en.wikipedia
.org/wiki/Cylinder

� �
getInit(["ab", "cd", "ef", "gh"])
output: ["ab", "cd", "ef"]� �� �
getInit([3.3])
output: Float64[]� �� �
getInit([])
output: Any[]� �
3.9 Julia - Solutions

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

3.9.1 Solution to Exercise 1

Since I’m eating a surface, and the task description gives me diameters, then I
should probably calculate area of a circle90. I will use Base.MathConstants.pi91
in my calculations.� �
function getCircleArea(radius::Real)::Real

return pi ∗ radius ∗ radius
end� �
Now, we can finally get the answer.� �
radius = diameter / 2
(getCircleArea(30/2) ∗ 2, getCircleArea(45/2))� �
(1413.7166941154069, 1590.431280879833)

It seems that I will get more food while ordering this one pizza (45 cm in di-
ameter) and not those two pizzas (each 30 cm in diameter).

Note: Instead of pi ∗ radius ∗ radius I could have used radius^2, where ^ is an
exponentiation operator in Julia. If I want to raise 2 to the fourth power I can
either type 2^4 or 2∗2∗2∗2 and get 16.

If all the pizzas were cylinders92 of equal heights (say 2 cm or an inch each)
then I would calculate their volumes like so

https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Area_of_a_circle
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi
https://en.wikipedia.org/wiki/Cylinder
https://en.wikipedia.org/wiki/Cylinder

48 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

93 https://docs.julialang
.org/en/v1/base/math
/#Base.isapprox
94 https://en.wikipedia
.org/wiki/Robustness
_(computer_science)

� �
function getCylinderVolume(radius::Real, height::Real=2)::Real

hmm, is cylinder just many circles stacked one on another?
return getCircleArea(radius) ∗ height

end� �
and the results� �
radius = diameter / 2
(getCylinderVolume(30/2) ∗ 2, getCylinderVolume(45/2))� �
(2827.4333882308138, 3180.862561759666)

Still, it appears the conclusion is the same.

3.9.2 Solution to Exercise 2

My solution to that problem would look something like� �
function areApproxEqual(f1::Float64, f2::Float64)::Bool

return round(f1, digits=16) == round(f2, digits=16)
end� �
Let’s put it to the test� �
areApproxEqual(0.1∗3, 0.3)� �
true

Seems to beworking fine. Still, youmayprefer to use Julia’s built-in isapprox93.
In general, it is a good idea to use a built in function from the standard library
over your own as it should be more robust94.

Anyway, let’s test isapprox as well.� �
isapprox(0.1∗3, 0.3)
compare with
isapprox(0.11∗3, 0.3)
or to test if the values are not equal
!isapprox(0.11∗3, 0.3)� �
true

It works just fine.

Lesson to be learned here. If you want to do something you can:

https://docs.julialang.org/en/v1/base/math/#Base.isapprox
https://docs.julialang.org/en/v1/base/math/#Base.isapprox
https://docs.julialang.org/en/v1/base/math/#Base.isapprox
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Robustness_(computer_science)

JULIA - FIRST ENCOUNTER 49

95 https://docs.julialang
.org/en/v1/base/sort/#
Base.sort

1. look for a function in the language documentation
2. look for a function in some library
3. write a function yourself by using what you already got at your disposal

3.9.3 Solution to Exercise 3

Possible solution� �
function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int

return isSortedDesc ? vect[1] : sort(vect)[end]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))� �
(3, 3)

or if you read the documentation for sort95� �
function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int

return isSortedDesc ? vect[1] : sort(vect, rev=true)[1]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))� �
(3, 3)

Sorting an array to get the maximum (or minimum) value is not the most ef-
fectivemethod (sorting is based on rearranging elements and takes quite some
time). Traveling through an array only once should be faster. Therefore prob-
ably a better solution (in terms of performance) would be something like� �
function getMaxUnsorted(unsortedVect::Vector{Int})::Int

maxVal::Int = unsortedVect[1]
for elt in unsortedVect[2:end]

if maxVal < elt
maxVal = elt

end
end
return maxVal

end

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
return isSortedDesc ? vect[1] : getMaxUnsorted(vect)

end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))� �

https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort
https://docs.julialang.org/en/v1/base/sort/#Base.sort

50 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

96 https://docs.julialang
.org/en/v1/base/math
/#Base.min
97 https://docs.julialang
.org/en/v1/base/math
/#Base.max
98 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.minimum
99 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.maximum

100 https://docs.juliala
ng.org/en/v1/manual/
mathematical-operation
s/#Operator-Precedenc
e-and-Associativity

(3, 3)

Read it carefully and try to figure out how it works.

Note: Julia already got similar functionality to getMin, getMax that we developed
ourselves. See min96, max97, minimum98, and maximum99.

3.9.4 Solution to Exercise 4

Perhaps the most direct version of the program would be� �
function printFizzBuzz()

for i in 1:30
or: if rem(i, 15) == 0
if rem(i, 3) == 0 && rem(i, 5) == 0

println("Fizz Buzz")
elseif rem(i, 3) == 0

println("Fizz")
elseif rem(i, 5) == 0

println("Buzz")
else

println(i)
end

end
return nothing

end� �
Note: Julia applies operators based on precedence and associativity100. If you
are unsure about the order of their evaluation (e.g. in if rem(i, 3) == 0 && rem
↪→(i, 5) == 0) then check the docs or use parenthesis () to enforce the desired
order of evaluation (e.g. if (rem(i, 3) == 0) && (rem(i, 5) == 0)).

Go ahead, test it out.

If you like challenges try to follow the execution of the following program.� �
function getFizzBuzz(num::Int)::String

return (
rem(num, 15) == 0 ? "Fizz Buzz" :
rem(num, 3) == 0 ? "Fizz" :
rem(num, 5) == 0 ? "Buzz" :
string(num)

)
end

https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.min
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/math/#Base.max
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.minimum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/base/collections/#Base.maximum
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity

JULIA - FIRST ENCOUNTER 51

101 https://en.wikipedia
.org/wiki/Sissa_(myth
ical_brahmin)

102 https://en.wikipedia
.org/wiki/Wheat_and_
chessboard_problem

103 https://docs.juliala
ng.org/en/v1/manual/
integers-and-floating-p
oint-numbers/#Integers
104 https://docs.juliala
ng.org/en/v1/manual/
integers-and-floating-p
oint-numbers/#Overfl
ow-behavior

function printFizzBuzz()
foreach(x −> println(getFizzBuzz(x)), 1:30)
return nothing

end

you can use it like so: printFizzBuzz()� �
There are probably other more creative [or more (unnecessarily) convoluted]
ways to solve this task. Personally, I would be satisfied if you understand the
first version.

3.9.5 Solution to Exercise 5

For more information about the legend see this Wikipedia’s article101.

If you want some more detailed mathematical explanation you can read that
Wikipedia’s article102.

TheWikipedia’s version of the legenddiffers slightly frommine, but I likemine
better.

Anyway let’s jump right into some looping.� �
function getNumOfGrainsOnField64()::Int

noOfGrains::Int = 1 # no of grains on field 1
for _ in 2:64

noOfGrains ∗= 2 # ∗= is update operator similar to +=
end
return noOfGrains

end

getNumOfGrainsOnField64()� �
-9223372036854775808

Hmm, that’s odd, a negative number.

Wait a moment. Now I remember, a computer got finite amount of memory.
So in order to work efficiently data is stored in small pre-allocated pieces of
it. If the number you put into that small ‘memory drawer’ is greater than the
amount of space then you get strange results (imagine that a number sticks
out of the drawer but Julia looks only at the part inside the drawer, hence the
strange result).

If you are interested in technical stuff then you can readmore about it in Julia’s
docs (sections Integers103 and Overflow Behavior104).

https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Integers
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Overflow-behavior

52 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

105 https://docs.juliala
ng.org/en/v1/base/nu
mbers/#BigFloats-and
-BigInts

106 https://en.wikipedia
.org/wiki/Wheat_and_
chessboard_problem

You can check the minimum and maximum value for Int by typing typemin
↪→(Int) and typemax(Int) on my laptop those are -9223372036854775808 and
9223372036854775807, respectively.

The broad range of Int is enough for most calculations, still if you expect a
really big number you should use BigInt105 (BigInt calculations are slower than
the ones for Int, but now you should be only limited by the amount of memory
on your computer).

So let me correct the code.� �
function getNumOfGrainsOnField64()::BigInt

noOfGrains::BigInt = 1 # no of grains on field 1
for _ in 2:64

noOfGrains ∗= 2
end
return noOfGrains

end

getNumOfGrainsOnField64()� �
9223372036854775808

Whoa, that number got like 19 digits. I don’t even know how to name it. It
cannot be that big, can it?

OK, quick verification with some mathematical calculation (don’t remember
^? See Section 3.9.1).� �
BigInt(2)^63 # we multiply 2 by 2 by 2, etc. for fields 2:64� �
9223372036854775808

Yep, the numbers appear to be the same.� �
getNumOfGrainsOnField64() == BigInt(2)^63� �
true

So I guess the aforementioned Wikipedia’s article106 is right, it takes much
more grain than a country (or the world) could produce in a year.

3.9.6 Solution to Exercise 6

A possible solution with generics looks something like that

https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

JULIA - FIRST ENCOUNTER 53

� �
function getInit(vect::Vector{T})::Vector{T} where T

return vect[1:(end−1)]
end� �
getInit (generic function with 1 method)

The parenthesis around end−1 are not necessary. I added them for better clarity
of how the last by one index is calculated.

Tests:� �
getInit([1, 2, 3, 4])� �
[1, 2, 3]� �
getInit(["ab", "cd", "ef", "gh"])� �
["ab", "cd", "ef"]� �
getInit([3.3])� �
Float64[]� �
getInit([])� �
BTW. Try to remove type declarations and see if the function still works (if you
do this right then it should).

OK, that’s it for now. Let’s move to another chapter.

1 https://en.wikipedia.o
rg/wiki/Statistics

2 https://docs.julialang
.org/en/v1/stdlib/Pkg/
3 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch04
4 https://pkgdocs.julial
ang.org/v1/environme
nts/

4 Statistics - introduction

OK, oncewe got some Julia basics under our belts, it is time to get familiar with
statistics.

First of all, what is statistics anyway?

Hmm, actually I have never tried to learn the definition by heart (after all get-
ting such a question during an exam is slim to none). Still, if I were to give a
short (2-3 sentences) definition without looking it up I would say something
like that.

Statistics is a set of methods for drawing conclusions about big things (popu-
lations) based on small things (samples). A statistician observes only a small
part of a bigger picture and makes generalization about what he does not see
based on what he saw. Given that he saw only a part of the picture he can
never be entirely sure of his conclusions.

OK, feel free to visit Wikipedia (see statistics1) and see how I did with my
definition. The definition given there is probably more accurate and compre-
hensive than the one given above, but maybe mine will be easier to grasp for
a beginner.

Anyway, my definition says “can never be entirely sure” so there needs to be
some way to measure the (un)certainty. This is where probability comes into
the picture. We will explore this concept in more than a few next pages.

4.1 Chapter imports

Later in this chapter we are going to use the following libraries� �
import CairoMakie as Cmk
import Distributions as Dsts
import Random as Rand� �
If you want to follow along you should have them installed on your system. A
reminder of how to deal (install and such) with packages can be found here2.
But wait, you may prefer to use Project.toml and Manifest.toml files from the
code snippets for this chapter3 to install the required packages. The instruc-
tions you will find here4.

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistics
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/

56 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

The imports will be placed in the code snippet when first used, but I thought
it is a good idea to put them here, after all imports should be at the top of your
file (so here they are at the top of the chapter). Moreover, that way they will
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from
the ∗.jl file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

4.2 Probability - definition

To me probability is one of the key concepts in statistics, after all any statisti-
cal software will gladly calculate the famous p-value (a form of probability)
for you. Still, let’s get back to our probability definition (see the sub-chapter
name).

As said, at the conclusion of the previous section (Section 4), probability is a
way to measure certainty. It’s like with the grades in school. In Poland a pupil
can score 1 to 6 (lowest to highest grade) and this tells us howwell hemastered
the subject. If I score 1 then I didn’t master it at all, but when I get 6 this means
that I got it all. We know from everyday life that probability takes values from
0 to 100%, e.g.

• Are you sure of it?
• Absolutely, one hundred percent.

or

• Do you think he can make it?
• I would say it’s fifty-fifty.

or even

• What are the chances?
• Pretty much, zero.

When something is bound to happen we assign it the probability of 100%.

When it can go either waywe say fifty-fifty (50% it will happen, 50% it will not
happen).

When an event is impossible we say zero (probability of it happening is 0%).

STATISTICS - INTRODUCTION 57

5 https://en.wikipedia.o
rg/wiki/Percentage

6 https://en.wikipedia.o
rg/wiki/Software_calcu
lator

And this is theway statisticians use it. OK,maybe not quite. A typical statistics
textbook will say that the probability takes values from 0 to 1. It is expressed
this way for a few particular reasons (some of the reasons may be given later).
Moreover, believe it or not, but it is actually compatible with our understand-
ing that is based on everyday life.

Fromprimary school (see alsoWikipedia’s definition of percentage5) I remem-
ber that 1% is actually 1/100th of something which I can write down using
proper fraction as 1

100 or a decimal as 0.01.

Therefore any probability value from 0% to 100% can be written in these few
forms. For instance:

• 0% = 0
100 = 0.00 = 0

• 1% = 1
100 = 0.01

• 5% = 5
100 = 0.05

• 10% = 10
100 = 0.10 = 0.1

• 20% = 20
100 = 0.20 = 0.2

• 50% = 50
100 = 0.50 = 0.5

• 100% = 100
100 = 1.00 = 1

To give you a better intuitive grasp of probability written as a decimal take a
look at this simplistic graphical depiction of it� �
prob = 0.0
impossible ||| certain

∆
prob = 0.2
impossible ||| certain

∆
prob = 0.5
impossible ||| certain

∆
prob = 0.8
impossible ||| certain

∆
prob = 1.0
impossible ||| certain

∆� �
Anyway, when written down as a decimal (like a statistician would do it) the
probability is easier to type with a keyboard and a software calculator6. Addi-
tionally, now we will be able to perform some simple but useful calculations
with those numbers (see the upcoming sections).

https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Software_calculator
https://en.wikipedia.org/wiki/Software_calculator
https://en.wikipedia.org/wiki/Software_calculator

58 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

7 https://en.wikipedia.o
rg/wiki/DNA

8 https://en.wikipedia.o
rg/wiki/Homologous_c
hromosome

9 https://en.wikipedia.o
rg/wiki/Allele
10 https://en.wikipedia
.org/wiki/Meiosis

11 https://en.wikipedia
.org/wiki/ABO_blood_
group_system#Genetics

4.3 Probability - properties

One of the cool and practical stuff that I learned about probability is that it can
be:

• added
• subtracted
• multiplied
• divided (not discussed in this section)

How about I illustrate that with a simple example.

From biology classes I remember that the genetic material (DNA7) of a cell is
in its nucleus. It is organized in a set of chromosomes. Chromosomes come
in pairs (twin or homologous chromosomes8, we get one from each of our
parents). Each chromosome contains genes (like beads on a thread). Since we
got a pair of chromosomes, then each chromosome from a pair contains a copy
of the same gene(s). The copies are exactly the same or are different versions
of a gene (we call them alleles9). In order to create gametes (like the egg cell
and sperm cells) the parents’ cells undergo division (meiosis10). During this
process a cell splits in two and each of the child cells gets one chromosome
from the pair.

For instance chromosome 9 contains the genes that determine our ABO blood
group system11. A meiosis process for a person with blood group AB would
look something like this (for simplicity I drew only twin chromosomes 9 and
only genes for ABO blood group system).

OK, let’s see how the mathematical properties of probability named at the be-
ginning of this sub-chapter apply here.

But first, a warm-up (or a reminder if you will). In the previous part (see
Section 4.2) we said that probability may be seen as a percentage, decimal or
fraction. I think that the last one will be particularly useful to broaden our un-
derstanding of the concept. To determine probability of an event in the numer-
ator (top) we insert the number of times that a particular event may happen,
in the denominator (bottom) we place the number of all possible events, like
so:

𝑛𝑢𝑚 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 𝑚𝑎𝑦 ℎ𝑎𝑝𝑝𝑒𝑛
𝑛𝑢𝑚 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 𝑚𝑎𝑦 ℎ𝑎𝑝𝑝𝑒𝑛

Let’s test this in practice with a few short Q&As (there may be some repeti-
tions, but they are on purpose).

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Homologous_chromosome
https://en.wikipedia.org/wiki/Allele
https://en.wikipedia.org/wiki/Allele
https://en.wikipedia.org/wiki/Meiosis
https://en.wikipedia.org/wiki/Meiosis
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics
https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics

STATISTICS - INTRODUCTION 59

Figure 4.1: Meiosis.
Splitting of a cell of
a person with blood
group AB.

60 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Q1. In the case illustrated in Figure 4.1 what is the probability of getting a ga-
mete with allele C [for short I’ll name it P(C)] from a person with blood group
AB?

A1. Since we can only get allele A or B, but no C then 𝑃(𝐶) = 0
2 = 0 (it is an

impossible event).

Q2. In the case illustrated in Figure 4.1 what is the probability of getting a
gamete with allele A [for short I’ll name it P(A)] from a person with blood
group AB?

A2. Since we can get only allele A or B then A is 1 of 2 possible events, so 1
2 = 0.5.

It seems that to answer this question we just had to divide the counts of the
events satisfying our requirements by the counts of all events.

Note: This is exactly the same probability (since it relies on the same reasoning)
as for getting a gamete with allele B (1 of 2 or 1

2 = 0.5)

Q3. In the case illustrated in Figure 4.1, what is the probability of getting a
gamete with allele A or B [for short I’ll name it P(A or B)] from a person with
blood group AB?

A3. Since we can only get allele A or B then A or B are 2 events (1 event when A
happens + 1 event when B happens) of 2 possible events, so

𝑃(𝐴 𝑜𝑟 𝐵) = 1+1
2 = 2

2 = 1.

It seems that to answer this question we just had to add the counts of the both
events.

Let’s look at it from a slightly different perspective.

Do you remember that in A2 we stated that the probability of getting gamete
A is 1

2 and the probability of getting gamete B is 1
2? And do you remember that

in primary school we learned that fractions can be added one to another? Let’s
see will that do us any good here.

𝑃(𝐴 𝑜𝑟 𝐵) = 𝑃(𝐴) + 𝑃 (𝐵) = 1
2 + 1

2 = 2
2 = 1

Interesting, the answer (and calculations) are (virtually) the same despite a
slightly different reasoning. So it seems that in this case the probabilities can
be added.

STATISTICS - INTRODUCTION 61

Q4. In the case illustrated in Figure 4.1, what is the probability of getting a
gamete with allele B (for short I’ll name it P(B)) from a person with blood
group AB?

A4. I know, we already answered it in A2. But let’s do something wild and
use a slightly different reasoning.

Getting gamete A or B are two incidents of two possible events (2 of 2). If we
subtract event A (that we are not interested in) from both the events we get:

𝑃(𝐵) = 2−1
2 = 1

2

It seems that to answer this question we just had to subtract the count of the
events we are not interested in from the counts of the both events.

Let’s see if this works with fractions (aka probabilities).

𝑃(𝐵) = 𝑃 (𝐴 𝑜𝑟 𝐵) − 𝑃(𝐴) = 2
2 − 1

2 = 1
2

Yep, a success indeed.

Q5. Look at Figure 4.2.

Herewe see that a personwith blood groupABgot childrenwith a personwith
blood group O (ii - recessive homo-zygote). The two possible blood groups in
children are A (Ai - hetero-zygote) and B (Bi - hetero-zygote).

And now, the question. In the case illustrated in Figure 4.2, what is the prob-
ability that a child (row C) of those parents (row P) will produce a gamete
with allele A (row CG)?

A5. One way to answer this question would be to calculate the gametes in the
last row (CG). We got 4 gametes in total (A, i, B, i) only one of which fulfills
the criteria (gamete with allele A). Therefore, the probability is

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 1
4 = 0.25 and that’s it.

Another way to think about this problem is the following. In order for a child
to produce a gamete with allele A it had to get it first from the parent. So what
we are looking for is:

1. what proportion of children got allele A from their parents (here, half of
them)

62 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 4.2: Blood
groups, gametes. P -
parents, PG - parents’
gametes, C - children,
CG - children’s’ ga-
metes.

STATISTICS - INTRODUCTION 63

2. in the children with allele A in their genotype, what proportion of gametes
contains allele A (here, half of the gametes)

So, in order to get the half of the half we have tomultiply two proportions (aka
fractions):

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 𝑃(𝐴 𝑖𝑛 𝐶) ∗ 𝑃(𝐴 𝑖𝑛 𝑔𝑎𝑚𝑒𝑡𝑒𝑠 𝑜𝑓 𝐶 𝑤𝑖𝑡ℎ 𝐴)

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 1
2 ∗ 1

2 = 1
4 = 0.25

So it turns out that probabilities can be multiplied (at least sometimes).

4.3.1 Probability properties - summary

The above was my interpretation of the probability properties explained with
biological examples instead of the standard fair coins tosses (not the perfect
analogy though, since the events are not quite independent). Let’s sum up of
what we learned. I’ll do this on a coin toss examples (outcome: heads or tails),
you compare it with the examples from Q&As above.

1. Probability of an event is a proportion (or fraction) of times this event hap-
pens to the total amount of possible distinctive events. Example: 𝑃(ℎ𝑒𝑎𝑑𝑠) =

ℎ𝑒𝑎𝑑𝑠
ℎ𝑒𝑎𝑑𝑠+𝑡𝑎𝑖𝑙𝑠 = 1

2 = 0.5

2. Probability of an impossible event is equal to 0. Probability of a certain
event is equal to 1. So, the probability takes values between 0 (inclusive)
and 1 (inclusive).

3. Probabilities of the mutually exclusive complementary events add up to 1.
Example: 𝑃(ℎ𝑒𝑎𝑑𝑠 𝑜𝑟 𝑡𝑎𝑖𝑙𝑠) = 𝑃(ℎ𝑒𝑎𝑑𝑠) + 𝑃(𝑡𝑎𝑖𝑙𝑠) = 1

2 + 1
2 = 1

4. Probability of two mutually exclusive complementary events occurring at
the same time is 0 (cannot get both heads and tails in a single coin toss).

5. Probability of twomutually exclusive complementary events occurring one
after another is a product of two probabilities.

Example: probability of getting two tails in two consecutive coin tosses
𝑃(𝑡𝑎𝑖𝑙𝑠 𝑎𝑛𝑑 𝑡𝑎𝑖𝑙𝑠) = 𝑃(𝑡𝑎𝑖𝑙𝑠 𝑖𝑛 1𝑠𝑡 𝑡𝑜𝑠𝑠) ∗ 𝑃(𝑡𝑎𝑖𝑙𝑠 𝑖𝑛 2𝑛𝑑 𝑡𝑜𝑠𝑠)
𝑃 (𝑡𝑎𝑖𝑙𝑠 𝑎𝑛𝑑 𝑡𝑎𝑖𝑙𝑠) = 1

2 ∗ 1
2 = 1

4 = 0.25
Actually, the last is also true for two simultaneous coin tosses (imagine that
one coin lands on a floor a few milliseconds before the other). Moreover,
notice that here, the result of the first coin toss does not influence the result
of the second coin toss (they are independent).

64 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

12 https://en.wikipedia
.org/wiki/Semen_anal
ysis#Sperm_count

13 https://docs.julialang
.org/en/v1/stdlib/Ra
ndom/#Random.seed!

Anyway, the chances are that whenever you say P(this) AND P(that) you
should use multiplication. Whereas whenever you say P(this) OR P(that)
you ought to use addition. Of course you should always think does it make
sense before you do it (if the events are not mutually exclusive and indepen-
dent then it may not). To check your reasoning it may be easier to think about
counts and their proportions. The latter can be translated to probabilities.

4.4 Probability - theory and practice

OK, in the previous chapter (see Section 4.3) we said that a person with blood
group AB would produce gametes A and B with probability 50% (p = 1

2 = 0.5)
each. A reference value for sperm count12 is 16’000’000 per mL or 16’000 per
𝜇𝐿. Given that last value, we would expect 8’000 cells (16’000 * 0.5) to contain
allele A and 8’000 (16’000 * 0.5) cells to contain allele B.

Let’s put that to the test.

Wait! Hold your horses! We’re not going to take biological samples. Instead
we will do a computer simulation.� �
import Random as Rand
Rand.seed!(321) # optional, needed for reproducibility
gametes = Rand.rand(["A", "B"], 16_000)
first(gametes, 7)� �
["B", "A", "B", "A", "B", "A", "A"]

First, we import a package to generate random numbers (import Random as Rand
↪→). Then we set seed to some arbitrary number (Rand.seed!(321)) in order to
reproduce the results see the docs13. Thanks to the above you should get the
exact same result as I did (assuming you’re using the same version of Julia).
Then we draw 16’000 gametes out of two available (gametes = Rand.rand(["A",
↪→ "B"], 16_000)) with function rand (drawing with replacement) from Random
library (imported as Rand). Finally, since looking through all 16’000 gametes is
tedious we display only first 7 (first(gametes, 7)) to have a sneak peak at the
result.

Let’s write a function that will calculate the number of gametes for us.� �
function getCounts(v::Vector{T})::Dict{T,Int} where T

counts::Dict{T,Int} = Dict()
for elt in v

if haskey(counts, elt) #1
counts[elt] = counts[elt] + 1 #2

else #3

https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!
https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!

STATISTICS - INTRODUCTION 65

14 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.Dict

15 https://en.wikipedia
.org/wiki/All_models
_are_wrong

counts[elt] = 1 #4
end #5

end
return counts

end� �
Try to figure out what happened here on your own. If you need a refresher on
dictionaries in Julia see Section 3.5.3 or the docs14.

Briefly, firstwe initialize an emptydictionary (counts::Dict{T,Int} = Dict())with
keys of some type T (elements of that type compose the vector v). Next, for
every element (elt) in the vector v we check if it is present in the counts (if
↪→haskey(counts, elt)). If it is we add 1 to the previous count (counts[elt] =
↪→counts[elt] + 1). If not (else) we put the key (elt) into the dictionary with
count 1. In the end we return the result (return counts). The if ... else block
(lineswith comments #1-#5) could be replacedwith one line (counts[elt] = get(
↪→counts, elt, 0) + 1), but I thought the more verbose version would be easier
to understand.

Let’s test it out.� �
gametesCounts = getCounts(gametes)
gametesCounts� �
Dict{String, Int64} with 2 entries:
"B" => 8082
"A" => 7918

Hmm, that’s odd. Wewere suppose to get 8’000 gameteswith allele A and 8’000
with allele B. What happened? Well, reality. After all “All models are wrong,
but some are useful”15. Our theoretical reasoning was only approximation of
the real world and as such cannot be precise (although with greater sample
sizes comes greater precision). For instance, you can imagine that a fraction
of the gametes were damaged (e.g. due to some unspecified environmental
factors) andunderwent apoptosis (aka programmed cell death). So that’s how
it is, deal with it.

OK, let’s see what are the experimental probabilities we got from our hmm…
experiment.� �
function getProbs(counts::Dict{T, Int})::Dict{T,Float64} where T

total::Int = sum(values(counts))
return Dict(k => v/total for (k, v) in counts)

end� �

https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

66 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

First we calculate total counts nomatter the gamete category (sum(values(counts
↪→))). Thenwe use a dictionary comprehension, similar to the comprehension
wemet before (see Section 3.6.3). Briefly, for each key and value in counts (for
↪→(k,v) in counts)we create the same key in a newdictionarywith a new value
being the proportion of v in total (k => v/total).

And now the experimental probabilities.� �
gametesProbs = getProbs(gametesCounts)
gametesProbs� �
Dict{String, Float64} with 2 entries:
"B" => 0.505125
"A" => 0.494875

One last point. Whilewriting numerous programs I figured out it is sometimes
better to represent things (internally) as numbers and only in the last step
present them in a more pleasant visual form to the viewer (this way may be
faster computationally). In our case we could have used 0 as allele A and 1 as
allele B like so.� �
Rand.seed!(321)
gametes = Rand.rand([0, 1], 16_000)
first(gametes, 7)� �
[1, 0, 1, 0, 1, 0, 0]

Then to get the counts of the alleles I could type:� �
alleleBCount = sum(gametes)
alleleACount = length(gametes) − alleleBCount
(alleleACount, alleleBCount)� �
(7918, 8082)

And to get the probabilities for the alleles I could simply type:� �
alleleBProb = sum(gametes) / length(gametes)
alleleAProb = 1 − alleleBProb
(round(alleleAProb, digits=6), round(alleleBProb, digits=6))� �
(0.494875, 0.505125)

STATISTICS - INTRODUCTION 67

16 https://juliastats.org
/StatsBase.jl/stable/cou
nts/#StatsBase.countma
p
17 https://juliastats.org
/StatsBase.jl/stable/cou
nts/#StatsBase.proport
ionmap
18 https://en.wikipedia
.org/wiki/Probability_
distribution

Go ahead. Compare the numbers with those that you got previously and ex-
plain it to yourself why this second approach works. Once you’re done click
the right arrow to explore probability distributions in the next section.

Note: Similar functionality to getCounts and getProbs can be found in StatsBase.jl,
see: countmap16 and proportionmap17.

4.5 Probability distribution

Another important conceptworth knowing is that of probability distribution18.
Let’s explore it with some, hopefully interesting, examples.

First, imagine I offer Your a bet. You roll two six-sided dice. If the sum of the
dots is 12 then I give you $125, otherwise you give me $5. Hmm, sounds like a
good bet, doesn’t it? Well, let’s find out. By flexing our probabilistic muscles
and using a computer simulation this should not be too hard to answer.� �
function getSumOf2DiceRoll()::Int

return sum(Rand.rand(1:6, 2))
end

Rand.seed!(321)
numOfRolls = 100_000
diceRolls = [getSumOf2DiceRoll() for _ in 1:numOfRolls]
diceCounts = getCounts(diceRolls)
diceProbs = getProbs(diceCounts)� �
Here, we rolled two 6-sided dice 100 thousand (105) times. The code intro-
duces no new elements. The functions: getCounts, getProbs, Rand.seed! were al-
ready introduced in the previous chapter (see Section 4.4). And the for _ in
construct we met while talking about for loops (see Section 3.6.1).

So, let’s take a closer look at the result.� �
(diceCounts[12], diceProbs[12])� �
(2780, 0.0278)

It seems that out of 100’000 rolls with two six-sided dice only 2780 gave us two
sixes (6 + 6 = 12), so the experimental probability is equal to 0.0278. But is
it worth it? From a point of view of a single person (remember the bet is you
vs. me) a person got probability of diceProbs[12] = 0.0278 to win $125 and a
probability of sum([get(diceProbs, i, 0) for i in 2:11]) = 0.9722 to lose $5. Since

https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution

68 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

all the probabilities (for 2:12) add up to 1, the last part could be rewritten as 1 −
↪→ diceProbs[12] = 0.9722. Using Julia I canwrite this in the form of an equation
like so:� �
function getOutcomeOfBet(probWin::Float64, moneyWin::Real,

probLose::Float64, moneyLose::Real)::Float64
in mathematics first we do multiplication (∗), then subtraction (−)
return probWin ∗ moneyWin − probLose ∗ moneyLose

end

outcomeOf1bet = getOutcomeOfBet(diceProbs[12], 125, 1 − diceProbs[12], 5)

round(outcomeOf1bet, digits=2) # round to cents (1/100th of a dollar)� �
-1.39

In total you are expected to lose $ 1.39.

Now some people may say “Phi! What is $1.39 if I can potentially win $125 in
a few tries”. It seems to me those are emotions (and perhaps greed) talking,
but let’s test that too.

If 200 people make that bet (100 bet $5 on 12 and 100 bet $125 on the other
result) we would expect the following outcome:� �
numOfBets = 100

outcomeOf100bets = (diceProbs[12] ∗ numOfBets ∗ 125) −
((1 − diceProbs[12]) ∗ numOfBets ∗ 5)

or
outcomeOf100bets = ((diceProbs[12] ∗ 125) − ((1 − diceProbs[12]) ∗ 5)) ∗ 100
or simply
outcomeOf100bets = outcomeOf1bet ∗ numOfBets

round(outcomeOf100bets, digits=2)� �
-138.6

OK. So, above we introduced a few similar ways to calculate that. The result
of the bets is -138.6. In reality roughly 97 people that bet $5 on two sixes (6 +
6 = 12) lost their money and only 3 of them won $125 dollars which gives us
3 ∗ $125 − 97 ∗ $5 = −$110 (the numbers are not exact because based on the
probabilities we got, e.g. 2.78 people and not 3).

Interestingly, this is the same as if you placed that same bet with me 100 times.
Ninety-seven times you would have lost $5 and only 3 times you would have
won $125 dollars. This would leave you over $110 poorer and me over $110
richer ($110 transfer from you to me where the money should be).

STATISTICS - INTRODUCTION 69

19 https://juliapackages.
com/c/graphical-plott
ing
20 https://docs.makie.o
rg/stable/
21 https://docs.makie.o
rg/v0.21/tutorials/getti
ng-started

It seems that instead of betting on 12 (two sixes) many times you would be
better off had you started a casino or a lottery. Then you should find let’s say
1’000 people daily that will take that bet (or buy $5 ticket) and get you $ 1386.0
(outcomeOf1bet ∗ 1000) richer every day (well, probably less, because youwould
have to pay some taxes, still this makes a pretty penny).

OK, you saw right through me and you don’t want to take that bet. Hmm, but
what if I say a nice, big “I’m sorry” and offer you another bet. Again, you roll
two six-sided dice. If you get 11 or 12 I give you $90 otherwise you give me
$10. This time you know right away what to do:� �
pWin = sum([diceCounts[i] for i in 11:12]) / numOfRolls
or
pWin = sum([diceProbs[i] for i in 11:12])

pLose = 1 − pWin

round(pWin ∗ 90 − pLose ∗ 10, digits=2)
or
round(getOutcomeOfBet(pWin, 90, pLose, 10), digits=2)� �
-1.54

So, to estimate the probability we can either add number of occurrences of 11
and 12 and divide it by the total occurrences of all events OR, as we learned in
the previous chapter (see Section 4.3), we can just add the probabilities of 11
and 12 to happen. Then we proceed with calculating the expected outcome of
the bet and find out that I wanted to trick you again (“I’m sorry. Sorry.”).

Now, using this method (that relies on probability distribution) you will be
able to look through any bet that I will offer you and choose only those that
serve youwell. OK, sowhat is a probability distribution anyway? Well, it is just
the value that probability takes for any possible outcome. We can represent it
graphically by using any of Julia’s plotting libraries19.

Here, I’m going to use CairoMakie.jl20 which seems to produce pleasing to
the eye plots and is simple enough (that’s what I think after I read its Basic
Tutorial21). Nota bene also its error messages are quite informative (once you
learn to read them).� �
import CairoMakie as Cmk

function getSortedKeysVals(d::Dict{A,B})::Tuple{
Vector{A},Vector{B}} where {A,B}
sortedKeys::Vector{A} = keys(d) |> collect |> sort
sortedVals::Vector{B} = [d[k] for k in sortedKeys]
return (sortedKeys, sortedVals)

https://juliapackages.com/c/graphical-plotting
https://juliapackages.com/c/graphical-plotting
https://juliapackages.com/c/graphical-plotting
https://docs.makie.org/stable/
https://docs.makie.org/stable/
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started

70 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

22 http://gadflyjl.org/s
table/#Compilation

23 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Function-com
position-and-piping

24 https://docs.makie.o
rg/v0.21/tutorials/getti
ng-started
25 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Keyword-Arg
uments

end

xs1, ys1 = getSortedKeysVals(diceCounts)
xs2, ys2 = getSortedKeysVals(diceProbs)

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1:2],

title="Rolling 2 dice 100'000 times",
xlabel="Sum of dots",
ylabel="Number of occurrences",
xticks=2:12

)
Cmk.barplot!(ax1, xs1, ys1, color="red")
ax2 = Cmk.Axis(fig[2, 1:2],

title="Rolling 2 dice 100'000 times",
xlabel="Sum of dots",
ylabel="Probability of occurrence",
xticks=2:12

)
Cmk.barplot!(ax2, xs2, ys2, color="blue")
fig� �

Note: Because of the compilation process running Julia’s plots for the first time
may be slow. If that is the case youmay try some tricks recommended by package
designers, e.g. this one from the creators of Gadfly.jl22.

First, we extracted the sorted keys and values from our dictionaries (diceCounts
and diceProbs) using getSortedKeysVals. The only new element here is |> opera-
tor. It’s role is piping23 the output of one function as input to another function.
So keys(d) |> collect |> sort is just another way of writing sort(collect(keys(d)
↪→)). In both cases first we run keys(d), then we use the result of this function
as an input to collect function, and finally pass its result to sort function. Out
of the two options, the one with |> seems to be clearer to me.

Regarding the getSortedKeysVals it returns a tuple of sorted keys and values
(that correspond with the sorted keys). In line xs1, ys1 = getSortedKeysVals(
↪→diceCounts) we unpack and assign them to xs1 (it gets the sorted keys) and
ys1 (it gets values that correspond with the sorted keys). We do likewise for
diceProbs in the line below.

In the next step we draw the distributions as bar plots (Cmk.barplot!). The code
seems to be pretty self explanatory after you read the tutorial24 that I just men-
tioned. A point of notice here (in case you wanted to know more): the axis=,
color=, xlabel=, etc. are so called keyword arguments25. OK, let’s get back to the
graph. The number of counts (number of occurrences) on Y-axis is displayed

http://gadflyjl.org/stable/#Compilation
http://gadflyjl.org/stable/#Compilation
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments

STATISTICS - INTRODUCTION 71

Figure 4.3: Rolling two
6-sided dice (counts
and probabilities).

26 https://en.wikipedia
.org/wiki/Student%27
s_t-test
27 https://en.wikipedia
.org/wiki/Student%27
s_t-distribution

28 https://en.wikipedia
.org/wiki/Chi-squared
_test
29 https://en.wikipedia
.org/wiki/Chi-squared
_distribution

using scientific notation, i.e. 1.0𝑥104 is 10’000 (one with 4 zeros) and 1.5𝑥104

is 15’000.

OK, but why did I even bother to talk about probability distributions (except
for the great enlightenment it might have given to you)? Well, because it is
important. It turns out that in statistics one relies on many probability distri-
butions. For instance:

• We want to know if people in city A are taller than in city B. We take at ran-
dom 10 people from each of the cities, we measure them and run a famous
Student’s T-test26 to find out. It gives us the probability that helps us an-
swer our question. It does so based on a t-distribution27 (see the upcoming
Section 5.3).

• We want to know if cigarette smokers are more likely to believe in ghosts.
Whatwe do iswe find randomgroups of smokers and non-smokers and ask
them about it (Do you believe in ghosts?). We record the results and run
a chi squared test28 that gives us the probability that helps us answer our
question. It does so based on a chi squared distribution29 (see the upcoming
Section 6.3).

OK, that should be enough for now. Take some rest, and when you’re ready
continue to the next chapter.

https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution

72 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

30 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch04

4.6 Normal distribution

Let’s start where we left. We know that a probability distribution is a (possi-
bly graphical) depiction of the values that probability takes for any possible
outcome. Probabilities come in different forms and shapes. Additionally one
probability distribution can transform into another (or at least into a distribu-
tion that resembles another distribution).

Let’s look at a few examples.

Figure 4.4: Experi-
mental binomial and
multinomial probability
distributions.

Here we got experimental distributions for tossing a standard fair coin and
rolling a six-sided dice. The code for Figure 4.4 can be found in the code snip-
pets for this chapter30 and it uses the same functions that we developed pre-
viously.

Those are examples of the binomial (bi - two, nomen - name, those two names
could be: heads/tails, A/B, or most general success/failure) and multinomial
(multi - many, nomen - name, here the names are 1:6) distributions. Moreover,
both of them are examples of discrete (probability is calculated for a few dis-
tinctive values) and uniform (values are equally likely to be observed) distri-
butions.

Notice that in the Figure 4.4 (above) rolling one six-sided dice gives us an
uniform distribution (each value is equally likely to be observed). However in

https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04

STATISTICS - INTRODUCTION 73

31 https://en.wikipedia
.org/wiki/Bell

32 https://en.wikipedia
.org/wiki/Intelligence
_quotient
33 https://en.wikipedia
.org/wiki/Normal_dis
tribution

the previous chapter when tossing two six-sided dice we got the distribution
that looks like this.

Figure 4.5: Experi-
mental probability
distribution for rolling
two 6-sided dice.

Whatwe got here is a bell31 shaped distribution (c’mon use your imagination).
Here themiddle values are the onesmost likely to occur. It turns out that quite
a few distributions may transform into the distribution that is bell shaped (as
an exercise youmaywant to draw a distribution for the number of headswhen
tossing 10 fair coins simultaneously). Moreover, many biological phenomena
got a bell shaped distribution, e.g. men’s height or the famous intelligence quo-
tient32 (aka IQ). The theoretical name for it is normal distribution33. Placed
on a graph it looks like this.

Figure 4.6: Examples of
normal distribution.

https://en.wikipedia.org/wiki/Bell
https://en.wikipedia.org/wiki/Bell
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

74 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

34 https://en.wikipedia
.org/wiki/Polish_ident
ity_card

In Figure 4.6 the upper panel depicts standardnormal distributions (𝜇 = 0, 𝜎 =
1, explanation in a moment), a theoretical distribution that all statisticians and
probably some mathematicians love. The bottom panel shows a distribution
that is likely closer to the adult males’ height distribution in my country. Long
time ago I read that the average height for an adult man in Poland was 172
[cm] (5.64 [feet]) and the standard deviation was 7 [cm] (2.75 [inch]), hence
this plot.

Note: In order to get a real height distribution in a country you should probably
visit a web site of the country’s statistics office instead of relying on information
like mine.

As you can see normal distribution is often depicted as a line plot. That is be-
cause it is a continuous distribution (the values on x axes can take any number
from a given range). Take a look at the height. In my old identity card34 next
to the field “Height in cm” stands “181”, but is this really my precise height?
What if during a measurement the height was 180.7 or 181.3 and in the ID
there could be only height in integers. I would have to round it, right? So
based on the identity card information my real height is probably somewhere
between 180.5 and 181.49999… . Moreover, it can be any value in between (like
180.6354551…, although in reality ameasuringdevice does not have such a pre-
cision). So, in the bottom panel of Figure 4.6 I rounded theoretical values for
height (round(height, digits=0)) obtained from Rand.rand(Dsts.Normal(172, 7), 10
↪→_000_000) (Dsts is Distributions package that we will discuss soon enough).
Next, I drew bars (using Cmk.barplot that you know), and added a line that
goes through the middle of each bar (to make it resemble the figure in the top
panel).

As you perhaps noticed, the normal distribution is characterized by two pa-
rameters:

• the average (also called the mean) (in a population denoted as: 𝜇, in a sam-
ple as: 𝑥)

• the standard deviation (in a population denoted as: 𝜎, in a sample as: 𝑠, 𝑠𝑑
or 𝑠𝑡𝑑)

We already know the first one (average) from school and previous chapters
(e.g. getAvg from Section 3.6.1). However, the last one (standard deviation)
requires some explanation.

Let’s say that there are two students. Here are their grades.� �
gradesStudA = [3.0, 3.5, 5.0, 4.5, 4.0]
gradesStudB = [6.0, 5.5, 1.5, 1.0, 6.0]� �

https://en.wikipedia.org/wiki/Polish_identity_card
https://en.wikipedia.org/wiki/Polish_identity_card
https://en.wikipedia.org/wiki/Polish_identity_card

STATISTICS - INTRODUCTION 75

Imagine that we want to send one student to represent our school in a national
level competition. Therefore, we want to know who is a better student. So,
let’s check their averages.� �
avgStudA = getAvg(gradesStudA)
avgStudB = getAvg(gradesStudB)
(avgStudA, avgStudB)� �
(4.0, 4.0)

Hmm, they are identical. OK, in that situation let’s see who is more consistent
with their scores.

To test the spread of the scores around the mean we will subtract every single
score from the mean and take their average (average of the differences).� �
diffsStudA = gradesStudA .− avgStudA
diffsStudB = gradesStudB .− avgStudB
(getAvg(diffsStudA), getAvg(diffsStudB))� �
(0.0, 0.0)

Note: Here we used the dot operators/functions described in Section 3.6.5

The method is of no use since sum(diffs) is always equal to 0 (and hence the
average is 0). See for yourself� �
(

diffsStudA,
diffsStudB

)� �
([−1.0, −0.5, 1.0, 0.5, 0.0],
[2.0, 1.5, −2.5, −3.0, 2.0])

And� �
(sum(diffsStudA), sum(diffsStudB))� �
(0.0, 0.0)

Personally in this situation I would take the average of diffs without looking
at the sign of each difference (abs function does that) like so.

76 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

35 https://en.wikipedia
.org/wiki/Variance

� �
absDiffsStudA = abs.(diffsStudA)
absDiffsStudB = abs.(diffsStudB)
(getAvg(absDiffsStudA), getAvg(absDiffsStudB))� �
(0.6, 2.2)

Based on this wewould say that student A is more consistent with their grades
so he is probably a better student of the two. I would send student A to repre-
sent the school during the national level competition. Student B is also good,
but choosing him is a gamble. He could shine or embarrass himself (and spot
the school’s name) during the competition.

For any reason statisticians decided to get rid of the sign in a different way,
i.e. by squaring (𝑥2 = 𝑥 ∗ 𝑥) the diffs. Afterwards they calculated the aver-
age of it. This average is named variance35. Next, they took square root of it
(
√

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) to get rid of the squaring (get the spread of the data in the same
scale as the original values, since

√
𝑥2 = 𝑥). So, they did more or less this� �

variance
function getVar(nums::Vector{<:Real})::Real

avg::Real = getAvg(nums)
diffs::Vector{<:Real} = nums .− avg
squaredDiffs::Vector{<:Real} = diffs .^ 2
return getAvg(squaredDiffs)

end

standard deviation
function getSd(nums::Vector{<:Real})::Real

return sqrt(getVar(nums))
end

(getSd(gradesStudA), getSd(gradesStudB))� �
(0.7071067811865476, 2.258317958127243)

Note: In reality the variance and standard deviation for a sample are calculated
with slightly different formulas. This is why the numbers returned here may be
marginally different from the ones produced by other statistical software. Still,
the functions above are easier to understand and give a better feel of the general
ideas.

In the end we got similar numbers, reasoning, and conclusions to the ones
based on abs function. Both the methods rely on a similar intuition, but we
cannot expect to get the same results due to the slightly differentmethodology.
For instance given the diffs: [−2, 3] we get:

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance

STATISTICS - INTRODUCTION 77

36 https://en.wikipedia
.org/wiki/68%E2%80
%9395%E2%80%9399.7
_rule

37 https://en.wikipedia
.org/wiki/68%E2%80
%9395%E2%80%9399.7
_rule

38 https://en.wikipedia
.org/wiki/Blood

39 https://en.wikipedia
.org/wiki/Complete_b
lood_count#Reference
_ranges

40 https://en.wikipedia
.org/wiki/Blood
41 https://en.wikipedia
.org/wiki/Hematocrit

• for squaring: (−22 + 32)/2 = (4 + 9)/2 = 13/2 = 6.5 and
√

6.5 = 2.55
• for abs values: (−2 + 3)/2 = (2 + 3)/2 = 5/2 = 2.5

Although I like my method better the sd and squaring/square rooting is so
deeply fixed into statistics that everyone should know it. Anyway, as you can
see the standard deviation is just an average spread of data around the mean.
The bigger value for sd the bigger the spread. Of course the opposite is also
true.

And now a big question.

Why should we care about the mean (𝜇, 𝑥) or sd (𝜎, 𝑠, 𝑠𝑑, 𝑠𝑡𝑑) anyway?

The answer. For practical reasons that got something to do with the so called
three sigma rule36.

4.6.1 The three sigma rule

The rule37 says that (here a simplified version made by me):

• roughly 68% of the results in the population lie within ± 1 sd from themean
• roughly 95% of the results in the population lie within ± 2 sd from themean
• roughly 99% of the results in the population lie within ± 3 sd from themean

Example 1

Have you ever tested your blood38 and received the lab results that said some-
thing like

• RBC39: 4.45 [106/𝜇𝐿] (4.2 - 6.00)

The RBC stands for red blood cell count and the parenthesis contain the ref-
erence values (if you are within this normal range then it is a good sign). But
where did those reference values come from? This Wikipedia’s page40 gives
us a clue. It reports a value for hematocrit41 (a fraction/percentage of whole
blood that is occupied by red blood cells) to be:

• 45 ± 7 (38–52%) for males
• 42 ± 5 (37–47%) for females

Look at this ± symbol. Have you seen it before? No? Then look at the three
sigma rule above.

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Hematocrit
https://en.wikipedia.org/wiki/Hematocrit

78 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

42 https://en.wikipedia
.org/wiki/Complete_b
lood_count

43 https://en.wikipedia
.org/wiki/Intelligence
_quotient#Current_test
s

44 https://juliastats.org
/Distributions.jl/stable/
45 https://en.wikipedia
.org/wiki/Standard_sco
re

The reference values were most likely composed in the following way. A large
number (let’s say 10’000-30’000) of healthy females gave their blood for testing.
Hematocrit value was calculated for all of them. The shape of the distribution
was established in a similar way to the one we did before (e.g. plotting with
a Cmk function). The average hematocrit was 42 units, the standard deviation
was 5 units. The majority of the results (roughly 68%) lie within ± 1 sd from
the mean. If so, then we got 42 - 5 = 37, and 42 + 5 = 47. And that is how those
two valueswere considered to be the reference values for the population. Most
likely the same is true for other reference values you see in your lab results
when you test your blood42 or when you perform other medical examination.

Example 2

Let’s say a person named Peter lives in Poland. Peter approaches the famous
IQ test conducted at one of our universities. He read on the internet that there
are different intelligence scales43 used throughout the world. His score is 125.
The standard deviation is 24. Is his score high, does it indicate he is gifted (a
genius level intellect)? Well, in order to be a genius one has to be in the top 2%
of the population with respect to their IQ value. What is the location of Peter’s
IQ value in the population.

The score of 125 is just a bit greater than 1 standard deviation above the mean
(which in an IQ test is always 100). From Section 4.5 we know that when we
add the probabilities for all the possible outcomes we get 1 (so the area under
the curve in Figure 4.6 is equal to 1). Half of the area lies on the left, half of
it on the right (1

2 = 0.5). So, a person with IQ = 100 is as intelligent or more
intelligent than half the people (1

2 = 0.5 = 50%) in the population. Roughly
68% of the results lies within 1 sd from the mean (half of it below, half of it
above). So, from IQ = 100 to IQ = 124 we got (68% / 2 = 34%). By adding
50% (IQ ≤ 100) to 34% (100 ≤ IQ ≤ 124) we get 50% + 34% = 84%. Therefore
in our case Peter (with his IQ = 125) is more intelligent than 84% of people in
the population (so top 16% of the population). His intelligence is above the
average, but it is not enough to label him a genius.

4.6.2 Distributions package

This is all nice and good to know, but in practice it is slow and not precise
enough. What if in the previous example the IQ was let’s say 139. What is the
percentage of people more intelligent than Peter. In the past that kind of ques-
tions were to be answered with satisfactory precision using statistical tables at
the end of a textbook. Nowadays it can be quickly answered with a greater
exactitude and speed, e.g. with the Distributions44 package. First let’s define
a helper function that is going to tell us how many standard deviations above
or below the mean a given value is (it is called z-score45)

https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Complete_blood_count
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests
https://juliastats.org/Distributions.jl/stable/
https://juliastats.org/Distributions.jl/stable/
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Standard_score

STATISTICS - INTRODUCTION 79

46 https://en.wikipedia
.org/wiki/Normal_dis
tribution

47 https://en.wikipedia
.org/wiki/Cumulative
_distribution_function
48 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.cdf-Tuple%7BUni
variateDistribution,%2
0Real%7D
49 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.Normal

� �
how many std. devs is value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64

return (value − mean)/sd
end� �
OK, now let’s give it a swing. First, something simple IQ = 76, and IQ = 124
(should equal to -1 sd, +1 sd). Alternatively, look at the value returned by getZScore
as a value on the x-axis in Figure 4.6 (top panel).� �
(getZScore(76, 100, 24), getZScore(124, 100, 24))� �
(−1.0, 1.0)

Indeed, it seems to be working as expected, and now the value from this task� �
zScorePeterIQ139 = getZScore(139, 100, 24)
zScorePeterIQ139� �
1.625

It is 1.625 sd above themean. However, we cannot use it directly to estimate the
percentage of people above that score because due to the shape of the distribu-
tion in Figure 4.6 the change is not linear: 1 sd ≈ 68%, 2 sd ≈ 95%, 3 sd ≈ 99%
(first it changes quickly then it slows down). This is where the Distributions
package comes into the picture. Under the hood it uses ‘scary’ mathematical
formulas for normal distribution46 to get us what we want. In our case we use
it like this� �
import Distributions as Dsts

Dsts.cdf(Dsts.Normal(), zScorePeterIQ139)� �
0.9479187205847805

Here we first create a standard normal distribution with 𝜇 = 0 and 𝜎 = 1 (Dsts
↪→.Normal()). Then we sum all the probabilities that are lower than or equal to
zScorePeterIQ139 = getZScore(139, 100, 24) = 1.625 standard deviation above the
meanwith Dsts.cdf. We see that roughly 0.9479≈ 95%of people is as intelligent
or less intelligent than Peter. Therefore in this case only≈0.05 or≈5%of people
are more intelligent than him. Alternatively you may say that the probability
that a randomly chosen person from that population is more intelligent than
Peter is ≈0.05 or ≈5%.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal

80 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

50 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.ccdf-Tuple%7BUni
variateDistribution,%2
0Real%7D
51 https://en.wikipedia
.org/wiki/Probability_
density_function
52 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.pdf-Tuple%7BUni
variateDistribution,%2
0Real%7D

Note: cdf in Dsts.cdf stands for cumulative distribution function47. For more
information on Dsts.cdf see these docs48 or for Dsts.Normal those docs49.

The above is a classical method and it is useful to know it. Based on the z-
score you can check the appropriate percentage/probability for a given value
in a table that is usually placed at the end of a statistics textbook. Make sure
you understand it since, we are going to use this method, e.g. in the upcoming
chapter on a Student’s t-test (see Section 5.2).

Luckily, in the case of the normal distribution we don’t have to calculate the
z-score. The package can do that for us, compare� �
for better clarity each method is in a separate line
(

Dsts.cdf(Dsts.Normal(), getZScore(139, 100, 24)),
Dsts.cdf(Dsts.Normal(100, 24), 139)

)� �
(0.9479187205847805, 0.9479187205847805)

So, in this case you can either calculate the z-score for standard normal distri-
bution with 𝜇 = 0 and 𝜎 = 1 or define a normal distribution with a givenmean
and sd (here Dsts.Normal(100, 24)) and let the Dsts.cdf calculate the z-score (un-
der the hood) and probability (it returns it) for you.

To further consolidate our knowledge. Let’s go with another example. Re-
member that I’m 181 cm tall. Hmm, I wonder what percentage of men in
Poland is taller than me if 𝜇 = 172 [cm] and 𝜎 = 7 [cm].� �
1 − Dsts.cdf(Dsts.Normal(172, 7), 181)� �
0.09927139684333097

The Dsts.cdf gives me left side of the curve (the area under the curve for height
≤ 181). So in order to get those that are higher than me I subtracted it from 1.
It seems that under those assumptions roughly 10% ofmen in Poland are taller
than me (approx. 1 out of 10 men that I encounter is taller than me). I could
also say: “the probability that a randomly chosen man from that population is
higher than me is ≈0.1 or ≈10%. Alternatively I could have used Dsts.ccdf50
function which under the hood does 1 − Dsts.cdf(distribution, xCutoffPoint).

OK, and howmanymen in Poland are exactly as tall as I am? In general that is
the job for Dsts.pdf (pdf stands for probability density function51, see the docs
for Dsts.pdf52). It works pretty well for discrete distributions (we talked about
them at the beginning of this sub-chapter). For instance theoretical probability
of getting 12 while rolling two six-sided dice is

https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D

STATISTICS - INTRODUCTION 81

53 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.Binomial
54 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.pdf-Tuple%7BUni
variateDistribution,%2
0Real%7D

� �
Dsts.pdf(Dsts.Binomial(2, 1/6), 2)� �
0.02777777777777778

Compare it with the empirical probability from Section 4.5 which was equal to
0.0278. Here we treated it as a binomial distribution (success: two sixes (6 + 6
= 12), failure: other result) hence Dsts.Binomial with 2 (number of dice to roll)
and 1/6 (probability of getting 6 in a single roll). Then we used Dsts.pdf to get
the probability of getting exactly two sixes. More info on Dsts.Binomial can be
found here53 and on Dsts.pdf can be found there54.

However there is a problem with using Dsts.pdf for continuous distributions
because it can take any of the infinite values within the range. Remember, in
theory there is an infinite number of values between 180 and 181 (like 180.1111,
180.12222, etc.). So usually for practical reasons it is recommended not to cal-
culate a probability density function (hence pdf) for a continuous distribution
(1 / infinity ≈ 0). Still, remember that the height of 181 [cm] means that the
value lies somewhere between 180.5 and 181.49999… . Moreover, we can reli-
ably calculate the probabilities (with Dsts.cdf) for ≤ 180.5 and ≤ 181.49999…
so a good approximation would be� �
heightDist = Dsts.Normal(172, 7)
2 digits after dot because of the assumed precision of a measuring device
Dsts.cdf(heightDist, 181.49) − Dsts.cdf(heightDist, 180.50)� �
0.024724273314878698

OK. So it seems that roughly 2.5% of adult men in Poland got 181 [cm] in the
field “Height” in their identity cards. If there are let’s say 10 million adult
men in Poland then roughly 250000.0 (so 250 k) people are approximately my
height. Alternatively under those assumptions the probability that a random
man from the population is as tall as I am (181 cm in the height field of his
identity card) is ≈0.025 or ≈2.5%.

If you are still confused about this method take a look at the figure below.

Here for better separation I placed the height of men between 170 and 180
[cm]. The method that I used subtracts the area in blue from the area in red
(red - blue). That is exactly what I did (but for 181.49 and 180.50 [cm]) when
I typed Dsts.cdf(heightDist, 181.49) − Dsts.cdf(heightDist, 180.50) above.

OK, time for the last theoretical sub-chapter in this section. Whenever you’re
ready click on the right arrow.

https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-Tuple%7BUnivariateDistribution,%20Real%7D

82 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 4.7: Using cdf to
calculate proportion of
men that are between
170 and 180 [cm] tall.

4.7 Hypothesis testing

OK, now we are going to discuss a concept of hypothesis testing. But first
let’s go through an example from everyday life that we know or at least can
imagine. Ready?

4.7.1 A game of tennis

So imagine there is a group of people and among them two amateur tennis
players: John and Peter. Everyone wants to knowwhich one of them is a better
tennis player. Well, there is only one way to find out. Let’s play some games!

As far as I’m aware a tennis match can end with a win of one player, the other
loses (there are no draws). Before the games the people set the rules. Everyone
agrees that the players will play six games. To prove their supremacy a player
must win all six games (six wins in a row are unlikely to happen by accident, I
hope we can all agree on that). The series of games ends with the result 0-6 for
Peter. According to the previously set rules he is declared the local champion.

Believe it or not but this iswhat statisticians do. Of course theyusemore formal
methodology and some mathematics, but still, this is what they do:

• before the experiment they start with two assumptions

STATISTICS - INTRODUCTION 83

55 https://en.wikipedia
.org/wiki/Null_hypot
hesis
56 https://en.wikipedia
.org/wiki/Alternative_
hypothesis

– initial assumption: be fair and assume that both players play equally well
(this is called the null hypothesis55, 𝐻0)

– alternative assumption: one player is better than the other (this is called
the alternative hypothesis56, 𝐻𝐴)

• before the experiment they decide on how big a sample should be (in our
case six games).

• before the experiment they decide on the cutoff level, once it is reached they
will abandon the initial assumption (𝐻0) and chose the alternative (𝐻𝐴).
In our case the cutoff is: six games in a row won by a player

• they conduct the experiment (players play six games) and record the results

• after the experiment when the result provides enough evidence (in our case
six games won by the same player) they decide to reject 𝐻0, and choose 𝐻𝐴.
Otherwise they stick to their initial assumption (they do not reject 𝐻0)

And that’s how it is, only that statisticians prefer to rely on probabilities instead
of absolute numbers. So in our case a statistician says:

“I assume that𝐻0 is true. Then Iwill conduct the experiment and record the re-
sult. I will calculate the probability of such a result (or a more extreme result)
happening by chance. If it is small enough, let’s say 5% or less (𝑝𝑟𝑜𝑏 ≤ 0.05),
then the result is unlikely to have occurred by accident. Therefore I will reject
my initial assumption (𝐻0) and choose the alternative (𝐻𝐴). Otherwise I will
stay with my initial assumption.”

Let’s see such a process in practice and connect it with what we already know.

4.7.2 Tennis - computer simulation

First a computer simulation.� �
result of 6 tennis games under H0 (equally strong tennis players)
function getResultOf6TennisGames()

return sum(Rand.rand(0:1, 6)) # 0 means John won, 1 means Peter won
end

Rand.seed!(321)
tennisGames = [getResultOf6TennisGames() for _ in 1:100_000]
tennisCounts = getCounts(tennisGames)
tennisProbs = getProbs(tennisCounts)� �
Here getResultOf6TennisGames returns a result of 6 games under 𝐻0 (both players
got equal probability to win a game). When John wins a game then we get 0,

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis

84 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

when Peter we get 1. So if after running getResultOf6TennisGameswe get, e.g. 4 we
know that Peterwon 4 games and Johnwon 2 games. We repeat the experiment
100’000 times to get a reliable estimate of the results distribution.

OK, at the beginning of this chapter we intuitively said that a player needs to
win 6 games to become the local champion. We know that the result was 0-6
for Peter. Let’s see what is the probability that Peter won by chance six games
in a row (assuming 𝐻0 is true).� �
tennisProbs[6]� �
0.01538

In this case the probability of Peter winning by chance six games in a row is
very small. If we express it graphically it roughly looks like this:� �
prob = 0.015
impossible ||| certain

∆� �
So, it seems that intuitively we set the cutoff level well. Let’s see if the statisti-
cian from the quotation above would be satisfied (“If it is small enough, let’s
say 5% or less (𝑝𝑟𝑜𝑏 ≤ 0.05), then the result is unlikely to have occurred by
accident. Therefore I will reject my initial assumption (𝐻0) and choose the
alternative (𝐻𝐴). Otherwise I will stay with my initial assumption.”)

First, let’s compare them graphically.� �
prob = 0.05
impossible ||| certain

∆

prob = 0.0153
impossible ||| certain

∆� �
Although our text based graphics is slightly imprecise, we can see that the
obtained probability lies below (to the left of) our cutoff level. And now more
precise mathematical comparison.� �
sigLevel − significance level for probability
5% = 5/100 = 0.05
function shouldRejectH0(prob::Float64, sigLevel::Float64 = 0.05)::Bool

@assert (0 <= prob <= 1) "prob must be in range [0−1]"
@assert (0 <= sigLevel <= 1) "sigLevel must be in range [0−1]"
return prob <= sigLevel

end

STATISTICS - INTRODUCTION 85

57 https://juliastats.org
/Distributions.jl/stable/

shouldRejectH0(tennisProbs[6])� �
true

Indeed he would. He would have to reject 𝐻0 and assume that one of the
players (here Peter) is a better player (𝐻𝐴).

4.7.3 Tennis - theoretical calculations

OK, to be sure of our conclusions let’s try the same with the Distributions57
package (imported as Dsts) that we met before.

Remember one of the two tennis players must win a game (John or Peter). So
this is a binomial distributions we met before. We assume (𝐻0) both of them
play equally well, so the probability of any of them winning is 0.5. Now we
can proceed like this using a dictionary comprehension similar to the one that
we have met before (e.g. see getProbs definition from Section 4.4)� �
tennisTheorProbs = Dict(

i => Dsts.pdf(Dsts.Binomial(6, 0.5), i) for i in 0:6
)

tennisTheorProbs[6]� �
0.015624999999999977

Yep, the number is pretty close to tennisProbs[6]we got before which is 0.01538.
So we decide to go with 𝐻𝐴 and say that Peter is a better player. Just in case
I will place both distributions (experimental and theoretical) one below the
other to make the comparison easier. Behold

Notice that in order to get a satisfactory approximation of theoretical probabil-
ities a sufficiently large number of repetitions needs to be ensured. Figure 4.8
(row 1, column 1) demonstrates an imprecise probability estimation obtained
when only 100 computer simulations were used. In this case it could be no-
ticed in few places, but it is especially evident in the case of overly large bar at
x = 4 (indicated by the arrow).

Anyway, once we have warmed upwe can even calculate the probability using
our knowledge from Section 4.3.1. We can do this since by assuming our null
hypothesis (𝐻0) we basically compared the result of a game between John and
Peter to a fair coin’s toss (0 or 1, John or Peter, heads or tails).

The probability of Peter winning a single game is 𝑃(𝑃𝑒𝑡𝑒𝑟) = 1
2 = 0.5. Peter

won all six games. In order to get two wins in a row, first he had to won one

https://juliastats.org/Distributions.jl/stable/
https://juliastats.org/Distributions.jl/stable/

86 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 4.8: Probability
distribution for 6 tennis
games if 𝐻0 is true.

game. In order to get three wins in a row first he had to won two games in
a row, and so on. So he had to win game 1 AND game 2 AND game 3 AND
… . Given the above, and what we stated in Section 4.3.1, here we deal with a
conjunction of probabilities. Therefore we use probability multiplication like
so� �
tennisTheorProbWin6games = 0.5 ∗ 0.5 ∗ 0.5 ∗ 0.5 ∗ 0.5 ∗ 0.5
or
tennisTheorProbWin6games = 0.5 ^ 6

tennisTheorProbWin6games� �
0.015625

Compare it with tennisTheorProbs[6] calculated by Distributions package� �
(tennisTheorProbs[6], tennisTheorProbWin6games)� �
(0.015624999999999977, 0.015625)

They are the same. The difference is caused by a computer representation of
floats and their rounding (as a reminder see Section 3.3.3, and Section 3.9.2).

STATISTICS - INTRODUCTION 87

58 https://en.wikipedia
.org/wiki/One-_and_
two-tailed_tests

Anyway, I justwanted to present all threemethods for two reasons. First, that’s
the way we checked our reasoning at math in primary school (solving with
different methods). Second, chances are that one of the explanations may be
too vague for you, if so help yourself to the other methods :)

In general, as a rule of thumb you should remember that the null hypothesis
(𝐻0) assumes lack of differences/equality, etc. (and this is what we assumed
in this tennis example).

4.7.4 One or two tails

Hopefully, the above explanations were clear enough. There is a small nu-
ance to what we did. In the beginning of Section 4.7.1 we said ‘To prove their
supremacy a player must win all six games’. A player, so either John or Pe-
ter. Still, we calculated only the probability of Peter winning the six games
(tennisTheorProbs[6]), Peter and not John. What we did there was calculating
one tail probability58 (see the figures in the link). Now, take a look at Fig-
ure 4.8 (e.g. bottom panel) the middle of it is ‘body’ and the edges to the left
and right are tails.

This approach (one-tailed test) is rather OK in our case. However, in statistics
it is frequently recommended to calculate two-tails probability (usually this is
the default option in many statistical functions/packages). That is why at the
beginning of Section 4.7.1 I wrote ‘alternative assumption: one player is better
than the other (this is called alternative hypothesis, 𝐻𝐴)’.

Calculating the two-tailedprobability is very simple, we can either add tennisTheorProbs
↪→[6] + tennisTheorProbs[0] (remember 0means that Johnwon all six games) or
multiply tennisTheorProbs[6] by 2 (since the graph in Figure 4.8 is symmetrical).� �
(tennisTheorProbs[6] + tennisTheorProbs[0], tennisTheorProbs[6] ∗ 2)� �
(0.031249999999999955, 0.031249999999999955)

Once we got it we can perform our reasoning one more time.� �
shouldRejectH0(tennisTheorProbs[6] + tennisTheorProbs[0])� �
true

In this case the decision is the same (but that is not always the case). As I said
before in general it is recommended to choose a two-tailed test over a one-tailed
test. Why? Let me try to explain this with another example.

https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

88 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

59 https://en.wikipedia
.org/wiki/Playing_card

Imagine I tell you that I’m a psychic that talks with the spirits and I know a
lot of the stuff that is hidden from mere mortals (like the rank and suit of a
covered playing card59). You say you don’t believe me and propose a simple
test.

You take 10 random cards from a deck. My task is to tell you the color (red or
black). And I did, the only problem is that I was wrong every single time! If
you think that proves that your were right in the first place then try to guess
10 cards in a row wrongly yourself (if you don’t have cards on you go with 10
consecutive fair coin tosses).

It turns out that guessing 10 cards wrong is just as unlikely as guessing 10 of
them right (0.5^10 = 0.0009765625 or 1 per 1024 tries in each case). This could
potentially mean a few things, e.g.

• I really talk with the spirits, but in their language “red” means “black”, and
“black” means “red” (cultural fun fact: they say Bulgarians nod their heads
when they say “no”, and shake them for “yes”),

• I live in one of 1024 alternative dimensions/realities and in this reality I
managed to guess all of them wrong, when the other versions of me had
mixed results, and that one version of me guessed all of them right,

• I am a superhero and have an x-ray vision in my eyes so I saw the cards, but
I decided to tell them wrong to protect my secret identity,

• I cheated, and were able to see the cards beforehand, but decided to mock
you,

• or some other explanation is in order, but I didn’t think of it right now.

The small probability only tells us that the result is unlikely to has happened by
chance alone. Still, you should always choose your null (𝐻0) and alternative
(𝐻𝐴) hypothesis carefully. Moreover, it is a good idea to look at both ends of
a probability distribution.

4.7.5 All the errors that we make

Long time ago when I was a student I visited a local chess club. I was late that
day, and only one person was without a pair, Paul. I introduced myself and
we played a few games. In chess you can either win, lose, or draw a game.
Unfortunately, I lost all six games we played that day. I was upset, I assumed
I just encountered a better player. I thought: “Too bad, but next week I will
be on time and find someone else to play with” (nobody likes loosing all the
time). The next week I came to the club, and again the only person without a
pair was Paul (just my luck). Still, despite the bad feelings I won all six games
that we played that day (what are the odds). Later on it turned out that me

https://en.wikipedia.org/wiki/Playing_card
https://en.wikipedia.org/wiki/Playing_card

STATISTICS - INTRODUCTION 89

60 https://en.wikipedia
.org/wiki/Type_I_and
_type_II_errors

61 https://en.wikipedia
.org/wiki/Power_of_a
_test

and Paul are pretty well matched chess players (we played chess at a similar
level).

The story demonstrates that evenwhen there is a lot of evidence (six lost games
during the first meeting) we can still make an error by rejecting our null hy-
pothesis (𝐻0).

In fact, whenever we do statistics we turn into judges, since we can make a
mistake in two ways (see Figure 4.9).

Figure 4.9: A judge
making a verdict. FP -
false positive, FN - false
negative.

An accused is either guilty or innocent. A judge (or a jury in some countries)
sets a verdict based on the evidence.

If the accused is innocent but is sentenced anyway then it is an error, it is usu-
ally called type I error60 (FP - false positive in Figure 4.9). Its probability is
denoted by the first letter of the Greek alphabet, so alpha (α).

In the case of John and Peter playing tennis the type I probability was ≤ 0.05.
More precisely it was tennisTheorProbs[6] = 0.015625 (for a one tailed test).

If the accused is guilty but is declared innocent then it is another type of error, it
is usually called type II error (FN - false negative in Figure 4.9). Its probability
is denoted by the second letter of the Greek alphabet, so beta (β). Beta helps
us determine the power of a test61 (power = 1 - β), i.e. if 𝐻𝐴 is really true then
how likely it is that we will choose 𝐻𝐴 over 𝐻0.

So to sum up, in the judge analogy a really innocent person is 𝐻0 being true
and a really guilty person is 𝐻𝐴 being true.

Unfortunately, most of the statistical textbooks that I’ve read revolve around
type I errors and alphas, whereas type II error is coveredmuch less extensively

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Power_of_a_test
https://en.wikipedia.org/wiki/Power_of_a_test
https://en.wikipedia.org/wiki/Power_of_a_test

90 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

62 https://en.wikipedia
.org/wiki/Ronald_Fis
her

(hence my own knowledge of the topic is more limited).

In the tennis example above we rejected 𝐻0, hence here we risk committing
the type I error. Therefore, we didn’t speak about the type II error, but don’t
worry we will discuss it in more detail in the upcoming exercises at the end of
this chapter (see Section 4.8.5).

4.7.6 Cutoff levels

OK, once we know what are the type I and type II errors it is time to discuss
their cutoff values.

Obviously, the ideal situation would be if the probabilities of both type I and
type II errorswere exactly 0 (nomistakes is always the best). The only problem
is that this is not possible. In our tennis example one player won all six games,
and still some small risk of a mistake existed (tennisTheorProbs[6] = 0.015625).
If you ever see a statistical package reporting a p-value to be equal, e.g. 0.0000,
then this is just rounding to 4 decimal places and not an actual zero. So what
are the acceptable cutoff levels for 𝛼 (probability of type I error) and 𝛽 (prob-
ability of type II error).

The most popular choices for 𝛼 cutoff values are:

• 0.05, or
• 0.01

Actually, as far as I’m aware, the first of them (𝛼 = 0.05)was initially proposed
by Ronald Fisher62, a person sometimes named the father of the XX-century
statistics. This value was chosen arbitrarily and is currently frowned upon by
some modern statisticians as being to lenient. Therefore, 0.01 is proposed as a
more reasonable alternative.

As regards 𝛽 its two most commonly accepted cutoff values are:

• 0.2, or
• 0.1

Actually, as far as I remember the textbooks usually do not report values for 𝛽,
but for power of the test (if 𝐻𝐴 is really true then how likely it is that we will
choose 𝐻𝐴 over 𝐻0) to be 0.8 or 0.9. However, since as we mentioned earlier
power = 1 - 𝛽, then we can easily calculate the value for this parameter.

OK, enough of theory, time for some practice. Whenever you’re ready click the
right arrow to proceed to the exercises that I prepared for you.

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher

STATISTICS - INTRODUCTION 91

4.8 Statistics intro - Exercises

So, here are some exercises that you may want to solve to get from this chap-
ter as much as you can (best option). Alternatively, you may read the task
descriptions and the solutions (and try to understand them).

4.8.1 Exercise 1

Some mobile phones and cash dispensers prevent unauthorized access to the
resources by using a 4-digit PIN number.

What is the probability that a randomly typed number will be the right one?

Hint. Calculate how many different numbers you can type. If you get stuck, try to
reduce the problem to 1- or 2-digit PIN number.

4.8.2 Exercise 2

A few years ago during a home party a few people bragged that they can rec-
ognize beer blindly, just by taste, since, e.g. “the beer of brand X is great, of
brand Y is OK, but of brand Z tastes like piss” (hmm, how could they tell?).

We decided to put that to the test. We bought six different beer brands. One
person poured them to cups marked 1-6. The task was to taste the beer and
correctly place a label on it.

What is the probability that a person would place correctly 6 labels on 6 dif-
ferent beer at random.

Hint. This task may be seen as ordering of different objects. As always you may reduce
the problem to a smaller one. For instance think how many different orderings of 3 beer
do we have.

4.8.3 Exercise 3

Do you still remember our tennis example from Section 4.7.1, I hope so. Let’s
modify it a bit to solidify your understanding of the topic.

Imagine John and Peter played 6 games, but this time the result was 1-5 for
Peter. Is the difference statistically significant at the crazy cutoff level for 𝛼
equal to 0.15. Calculate the probability (the famous p-values) for one- and
two-tailed tests.

92 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4.8.4 Exercise 4

In the opening to Section 4.7.5 I told you a story from the old times. The day
when I met my friend Paul in a local chess club and lost 6 games in a rowwhile
playingwith him. So, here is a task for you. If wewere both equally good chess
players at that time then what is the probability that this happened by chance
(to make it simpler do one-tailed test)?

4.8.5 Exercise 5

Remember how in Section 4.7.5 we talked about a type II error. We said that
if we decide not to reject 𝐻0 we risk to commit a type II error or β. It is FN,
i.e. false negative, in our judge analogy from Section 4.7.5 (declaring a person
that is really guilty to be innocent). In statistics this is when the 𝐻𝐴 is true but
we fail to say so and stay with our initial hypothesis (𝐻0).

So here is the task.

Assume that the result of the six tennis games was 1-5 for Peter (like in Sec-
tion 4.8.3). Write a computer simulation that estimates the probability of type
II error that we commit in this case by not rejecting 𝐻0 (if the cutoff level for 𝛼
is equal to 0.05). To make it easier use one-tailed probabilities.

Hint: assume that 𝐻𝐴 is true and that in reality Peter wins with John on average with
the ratio 5 to 1 (5 wins - 1 defeat).

4.9 Statistics intro - Solutions

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

4.9.1 Solution to Exercise 1

The easiest way to solve this problem is to reduce it to a simpler one.

If the PIN number were only 1-digit, then the total number of possibilities
would be equal to 10 (numbers from 0 to 9).

For a 2-digit PIN the pattern would be as follow:� �
00
01
02
...

STATISTICS - INTRODUCTION 93

09
10
11
12
...
19
20
21
...
98
99� �
So, for every number in the first location there are 10 numbers (0-9) in the
second location. Just like in a counter (see gif below), the number on the left
switches to the next only when 10 numbers on the right changed beforehand.

Figure 4.10: A counter
(animation works
only in an HTML
document) depicting
rate of number changes.

Therefore in total we got numbers in the range 00-99, or to write it mathemat-
ically 10 * 10 different numbers (numbers per pos. 1 * numbers per pos. 2).

By extension the total number of possibilities for a 4-digit PIN is:� �
(method1, method2, method3)
(10 ∗ 10 ∗ 10 ∗ 10, 10^4, length(0:9999))� �
(10000, 10000, 10000)

So 10’000 numbers. Therefore the probability for a random number being the
right one is 1/10_000 = 0.0001

Similarmethodology is used to assess the strength of a password to an internet
website.

4.9.2 Solution to Exercise 2

OK, so let’s reduce the problem before we solve it.

94 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

63 https://en.wikipedia
.org/wiki/Factorial
64 https://docs.julialang
.org/en/v1/base/math
/#Base.factorial

65 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.prod

If I had only 1 beer and 1 label then there is only one way to do it. The label in
my hand goes to the beer in front of me.

For 2 labels and 2 beer it goes like this:� �
a b
b a� �
I place one of two labels on a first beer, and I’m left with only 1 label for the
second beer. So, 2 possibilities in total.

For 3 labels and 3 beer the possibilities are as follow:� �
a b c
a c b

b a c
b c a

c a b
c b a� �
So here, for the first beer I can assign any of the three labels (a, b, or c). Then I
move to the second beer and have only two labels left in my hand (if the first
got a, then the second can get only b or c). Then I move to the last beer with
the last label in my hand (if the first two were a and b then I’m left with c). In
total I got 3 ∗ 2 ∗ 1 = 6 possibilities.

It turns out this relationship holds also for bigger numbers. In mathematics it
can be calculated using the factorial63 function that is already implemented in
Julia (see the docs64).

Still, for practice we’re gonna implement one on our own with the foreach we
met in Section 3.6.4.� �
function myFactorial(n::Int)::Int

@assert n > 0 "n must be positive"
product::Int = 1
foreach(x −> product ∗= x, 1:n)
return product

end

myFactorial(6)� �
720

Note: You may also just use Julia’s prod65 function, e.g. prod(1:6) = 720. Still, be

https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/math/#Base.factorial
https://docs.julialang.org/en/v1/base/collections/#Base.prod
https://docs.julialang.org/en/v1/base/collections/#Base.prod
https://docs.julialang.org/en/v1/base/collections/#Base.prod

STATISTICS - INTRODUCTION 95

aware that factorial numbers growpretty fast, so for bigger numbers, e.g. myFactorial
↪→(20) or above you might want to change the definition of myFactorial to use
BigInt that we met in Section 3.9.5.

So, the probability that a person correctly labels 6 beer at random is round(1/
↪→factorial(6), digits=5) = 0.00139 = 1/720.

I guess that is the reason why out of 7 people that attempted to correctly label
6 beer the results were as follows:

• one person correctly labeled 0 beer
• five people correctly labeled 1 beer
• one person correctly labeled 2 beer

I leave the conclusions to you.

4.9.3 Solution to Exercise 3

OK, for the original tennis example (see Section 4.7.1) we answered the ques-
tion by using a computer simulation first (Section 4.7.2). For a change, this
time we will start with a ‘purely mathematical’ calculations. Ready?

In order to get the result of 1-5 for Peter we would have to get a series of games
like this one:� �
0 − John's victory, 1 − Peter's victory
0 1 1 1 1 1� �
Probability of either John or Peter winning under 𝐻0 (assumption that they
play equally well) is 1

2 = 0.5. So here we got a conjunction of probabilities
(JohnwonANDPeterwonANDPeterwonAND…). According towhatwe’ve
learned in Section 4.3.1 we should multiply the probabilities by each other.

Therefore, the probability of the result above is 0.5 ∗ 0.5 ∗ 0.5 ∗ ... or 0.5 ^ 6
= 0.015625. But wait, there’s more. We can get such a result (1-5 for Peter) in
a few different ways, i.e.� �
0 1 1 1 1 1
or
1 0 1 1 1 1
or
1 1 0 1 1 1
or
1 1 1 0 1 1
or

96 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

66 https://docs.julialang
.org/en/v1/base/math
/#Base.binomial

1 1 1 1 0 1
or
1 1 1 1 1 0� �

Note: For a big number of games it is tedious and boring to write down all
the possibilities by hand. In this case you may use Julia’s binomial66 function,
e.g. binomial(6, 5) = 6. This tells us how many different fives of six objects can
we get.

Aswe said amoment ago, each of this series of games occurswith the probabil-
ity of 0.015625. Since we used OR (see the comments in the code above) then
according to Section 4.3.1 we can add 0.015625 six times to itself (or multiply
it by 6). So, the probability is equal to:� �
prob1to5 = (0.5^6) ∗ 6 # parenthesis were placed for the sake of clarity
prob1to5� �
0.09375

Of coursewemust rememberwhat our imaginary statistician said in Section 4.7.1:
“I assume that 𝐻0 is true. Then I will conduct the experiment and record then
result. I will calculate the probability of such a result (or more extreme result)
happening by chance.”

More extreme than 1-5 for Peter is 0-6 for Peter, we previously (see Section 4.7.3)
calculated it to be 0.5^6 = 0.015625. Finally, we can get our p-value (for one-
tailed test)� �
prob1to5 = (0.5^6) ∗ 6 # parenthesis were placed for the sake of clarity
prob0to6 = 0.5^6
probBothOneTail = prob1to5 + prob0to6

probBothOneTail� �
0.109375

Note: Once you get used to calculating probabilities you should use quick meth-
ods like those from Distributions package (presented below), but for now it is
important to understand what happens here, hence those long calculations (of
probBothOneTail) shown here.

Let’s quickly verify it with other methods we met before (e.g. in Section 4.7)

https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial

STATISTICS - INTRODUCTION 97

� �
for better clarity each method is in a separate line
(

probBothOneTail,
1 − Dsts.cdf(Dsts.Binomial(6, 0.5), 4),
Dsts.pdf.(Dsts.Binomial(6, 0.5), 5:6) |> sum,
tennisProbs[5] + tennisProbs[6] # experimental probability

)� �
(0.109375, 0.109375, 0.10937499999999988, 0.11052000000000001)

Yep, they all appear the same (remember about floats rounding and the dif-
ference between theory and practice from Section 4.4).

So, is it significant at the crazy cutoff level of 𝛼 = 0.15?� �
shouldRejectH0(probBothOneTail, 0.15)� �
true

Yes, it is (we reject 𝐻0 in favor of 𝐻𝐴). And now for the two-tailed test (so
either Peter wins at least 5 to 1 or John wins with the exact same ratio).� �
remember the probability distribution is symmetrical, so ∗2 is OK here
shouldRejectH0(probBothOneTail ∗ 2, 0.15)� �
false

Here we cannot reject our 𝐻0.

Of course we all know that this was just for practice, because the acceptable
type I error cutoff level is usually 0.05 or 0.01. In this case, according to both
the one-tailed and two-tailed tests we failed to reject the 𝐻0.

BTW, this shows how important it is to use a strict mathematical reasoning and
to adhere to our own methodology. I don’t know about you but when I was a
student I would have probably accepted the result 1-5 for Peter as an intuitive
evidence that he is a better tennis player.

We will see how to speed up the calculations in this solution in one of the
upcoming chapters (see Section 6.2).

4.9.4 Solution to Exercise 4

OK, there maybe more than one way to solve this problem.

98 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

67 https://en.wikipedia
.org/wiki/Draw_(ches
s)#Frequency_of_draw
s

Solution 4.1

In chess, a game can end with one of the three results: white win, black win
or a draw. If we assume each of those options to be equally likely for a two
well matched chess players then the probability of each of the three results
happening by chance is 1/3 (this is our 𝐻0).

So, similarly to our tennis example from Section 4.7.1 the probability (one-
tailed test) of Paul winning all six games is� �
(1/3) that Paul won a single game AND six games in a row (^6)
(
round((1/3)^6, digits=5),
round(Dsts.pdf(Dsts.Binomial(6, 1/3), 6), digits=5)
)� �
(0.00137, 0.00137)

So, you might think right now ‘That task was a piece of cake’ and you would
be right. But wait, there’s more.

Solution 4.2

In chess played at a top level (>= 2500 ELO) the most probable outcome is
draw. It occurs with a frequency of roughly 50% (see thisWikipedia’s page67).
Based on that we could assume that for a two equally strong chess players the
probability of:

• white winning is 1/4,
• draw is 2/4 = 1/2,
• black winning is 1/4

So under those assumptions the probability that Paul won all six games is� �
(1/4) that Paul won a single game AND six games in a row (^6)
(
round((1/4)^6, digits=5),
round(Dsts.pdf(Dsts.Binomial(6, 1/4), 6), digits=5)
)� �
(0.00024, 0.00024)

So a bit lower, than the probabilitywegot before (whichwas (1/3)^6=0.00137).

OK, so I presented you with two possible solutions. One gave the probability
of (1/3)^6 = 0.00137, whereas the other (1/4)^6 = 0.00024. So, which one is it,

https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws
https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws

STATISTICS - INTRODUCTION 99

68 https://en.wikipedia
.org/wiki/All_models
_are_wrong

69 https://en.wikipedia
.org/wiki/One-way_a
nalysis_of_variance
70 https://en.wikipedia
.org/wiki/Post_hoc_a
nalysis

71 https://en.wikipedia
.org/wiki/Ronald_Fis
her
72 https://en.wikipedia
.org/wiki/John_Tukey

which one is the true probability? Well, most likely neither. All they really are
is just some estimations of the true probability and they are only as good as
the assumptions that we make. After all: “All models are wrong, but some are
useful”68.

If the assumptions are correct, then we can get a pretty good estimate. Both
the Solution 4.1 and Solution 4.2 got reasonable assumptions but they are not
necessarily true (e.g. I’m not a >= 2500 ELO chess player). Still, for practical
reasons they may be more useful than just guessing, for instance if you were
ever to bet on a result of a chess game/match (do you remember the bets from
Section 4.5?). They may not be good enough for you to win such a bet, but
they could allow to reduce the losses.

However, let me state it clearly. The reason Imentioned it is not for you to place
bets on chess matches but to point on similarities to statistical practice.

For instance, there is a method named one-way ANOVA69 (we will discuss
it, e.g. in the upcoming Section 5.4). Sometimes the analysis requires us to
conduct a so called post-hoc test70. There are quite a few of them to choose
from (see the link above) and they rely on different assumptions. For instance
onemaydo the Fisher’s LSD test or the Tukey’sHSD test. Which one to choose?
I think you should choose the test that is better suited for the job (based on your
knowledge and recommendations from the experts).

Regarding the abovementioned tests. The Fisher’s LSD test was introduced by
Ronald Fisher71 (what a surprise). LSD stands forLeastSignificantDifference.
Some time later John Tukey72 considered it to be too lenient (too easily rejects
𝐻0 and declares significant differences) and offered his own test (operating on
different assumptions) as an alternative. For that reason it was named HSD
which stands forHonestly SignificantDifference. I heard that statisticians rec-
ommend to use the latter one (although in practice I saw people use either of
them).

4.9.5 Solution to Exercise 5

OK, so we assume that Peter is a better player than John and he consistently
wins with John. On average he wins with the ratio 5 to 1 (5:1) with his oppo-
nent (this is our true 𝐻𝐴). Let’s write a function that gives us the result of the
experiment if this 𝐻𝐴 is true.� �
function getResultOf1TennisGameUnderHA()::Int

0 − John wins, 1 − Peter wins
return Rand.rand([0, 1, 1, 1, 1, 1], 1)

end

function getResultOf6TennisGamesUnderHA()::Int

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/John_Tukey
https://en.wikipedia.org/wiki/John_Tukey

100 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

return [getResultOf1TennisGameUnderHA() for _ in 1:6] |> sum
end� �
The code is fairly simple. Let me just explain one part. Under 𝐻𝐴 Peter wins
5 out of six games and John 1 out of 6, therefore we choose one number out of
[0, 1, 1, 1, 1, 1] (0 - John wins, 1 - Peter wins) with our Rand.rand([0, 1, 1,
↪→1, 1, 1], 1).

Note: If the 𝐻𝐴 would be let’s say 1:99 for Peter, then to save you some typing
I would recommend to do something like, e.g. return (Rand.rand(1:100, 1) <=
↪→99) ? 1 : 0. It draws one random number out of 100 numbers. If the number
is 1-99 then it returns 1 (Peter wins) else it returns 0 (John wins). BTW. When a
probability of an event is small (e.g. ≤ 1%) then to get its more accurate estimate
you could/should increase the number of computer simulations [e.g. numOfSimul
below should be 1_000_000 (shorter form 10^6) instead of 100_000 (shorter form
10^5)].

Alternatively the code from the snippet above could be shortened to� �
here no getResultOf1TennisGameUnderHA is needed
function getResultOf6TennisGamesUnderHA()::Int

return Rand.rand([0, 1, 1, 1, 1, 1], 6) |> sum
end� �
Now let’s run the experiment, let’s say 100_000 times, and see how many times
we will fail to reject 𝐻0. For that we will need the following helper functions� �
function play6tennisGamesGetPvalue()::Float64

result when HA is true
result::Int = getResultOf6TennisGamesUnderHA()
probability based on which we may decide to reject H0
oneTailPval::Float64 = Dsts.pdf.(Dsts.Binomial(6, 0.5), result:6) |> sum
return oneTailPval

end

function didFailToRejectHO(pVal::Float64)::Bool
return pVal > 0.05

end� �
In play6tennisGamesGetPvaluewe conduct an experiment and get a p-value (prob-
ability of type 1 error). First we get the result of the experiment under 𝐻𝐴, i.e
we assume the true probability of Peter winning a game with John to be 5/6
↪→ = 0.8333. We assign the result of those 6 games to a variable result. Next
we calculate the probability of obtaining such a result by chance under 𝐻0,
i.e. probability of Peter winning is 1/2 = 0.5 as we did in Section 4.9.3. We
return that probability.

STATISTICS - INTRODUCTION 101

Previously we said that the accepted cutoff level for alpha is 0.05 (see Sec-
tion 4.7.6). If p-value ≤ 0.05 we reject 𝐻0 and choose 𝐻𝐴. Here for 𝛽 we need
to know whether we fail to reject 𝐻0 hence didFailToRejectHO function with pVal
↪→ > 0.05.

And now, we can go to the promised 100_000 simulations.� �
numOfSimul = 100_000
Rand.seed!(321)
notRejectedH0 = [

didFailToRejectHO(play6tennisGamesGetPvalue()) for _ in 1:numOfSimul
]

probOfType2error = sum(notRejectedH0) / length(notRejectedH0)� �
0.66384

We run our experiment 100_000 times and record whether we failed to reject
𝐻0. We put that to notRejectedH0 using comprehensions (see Section 3.6.3). We
get a vector of Bools (e.g. [true, false, true]). When used with sum function
Julia treats true as 1 and false as 0. We can use that to get the average of true
(fraction of times we failed to reject 𝐻0). This is the probability of type II error,
it is equal to 0.66384. We can use it to calculate the power of a test (power = 1
- β).� �
function getPower(beta::Float64)::Float64

@assert (0 <= beta <= 1) "beta must be in range [0−1]"
return 1 − beta

end
powerOfTest = getPower(probOfType2error)

powerOfTest� �
0.33616

Finally, we get our results. We can compare them with the cutoff values from
Section 4.7.6, e.g. 𝛽 ≤ 0.2, 𝑝𝑜𝑤𝑒𝑟 ≥ 0.8. So it turns out that if in reality Peter is a
better tennis player than John (and on average wins with the ratio 5:1) thenwe
will be able to confirm that roughly in 3 experiments out of 10 (experiment -
the result of 6 games that they playwith each other). This is because the power
of a test should be ≥ 0.8 (accepted by statisticians), but it is 0.33616 (estimated
in our computer simulation). Here we can either say that they both (John and
Peter) play equally well (we did not reject 𝐻0) or make them play a greater
number of games with each other in order to confirm that Peter consistently
wins with John on average 5 to 1.

If you want to see a graphical representation of the solution to exercise 5 take
a look at the figure below.

102 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 4.11: Graphical
representation of the
estimation process for
type II error and the
power of a test.

The toppanels display the probability distributions for our experiment (6 games
of tennis) under 𝐻0 (red bars) and 𝐻𝐴 (blue bars). Notice, that the blue bars
for 0, 1, and 2 are so small that they are barely (or not at all) visible on the
graph. The black dotted vertical line is a cutoff level for type I error (or 𝛼),
which is 0.05. The bottom panel contains the distributions superimposed one
on the other. The probability of type II error (or 𝛽) is the sum of the heights
of the blue bar(s) to the left from the black dotted vertical line (the cutoff level
for type I error). The power of a test is the sum of the heights of the blue bar(s)
to the right from the black dotted vertical line (the cutoff level for type I error).

Hopefully the explanations above were clear enough. Still, the presented solu-
tion got a fewflaws, i.e.wehard coded 6 into our functions (e.g. getResultOf1TennisGameUnderHA
↪→, play6tennisGamesGetPvalue), moreover running 100_000 simulations is proba-
bly less efficient than running purely mathematical calculations. Let’s try to
add some plasticity and efficiency to our code (plus let’s check the accuracy of
our computer simulation).� �
to the right from that point on x−axis (>point) we reject H0 and choose HA
n − number of trials (games)
function getXForBinomRightTailProb(n::Int, probH0::Float64,

rightTailProb::Float64)::Int
@assert (0 <= rightTailProb <= 1) "rightTailProb must be in range [0−1]"
@assert (0 <= probH0 <= 1) "probH0 must be in range [0−1]"
@assert (n > 0) "n must be positive"

STATISTICS - INTRODUCTION 103

73 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.cquantile-Tuple%7
BUnivariateDistributio
n,%20Real%7D

return Dsts.cquantile(Dsts.Binomial(n, probH0), rightTailProb)
end

n − number of trials (games), x − number of successes (Peter's wins)
returns probability (under HA) from far left up to (and including) x
function getBetaForBinomialHA(n::Int, x::Int, probHA::Float64)::Float64

@assert (0 <= probHA <= 1) "probHA must be in range [0−1]"
@assert (n > 0) "n must be positive"
@assert (x >= 0) "x mustn't be negative"
return Dsts.cdf(Dsts.Binomial(n, probHA), x)

end� �
Note: The above functions should work correctly if probH0 < probHA, i.e. the
probability distribution under 𝐻0 is on the left and the probability distribution
under 𝐻𝐴 is on the right side of a graph, i.e. the case you see in Figure 4.11.

The function getXForBinomRightTailProb returns a value (number of Peter’s wins,
number of successes, value on x-axis in Figure 4.11) above which we reject
𝐻0 in favor of 𝐻𝐴 (if we feed it with cutoff for 𝛼 equal to 0.05). Take a look
at Figure 4.11, it returns the value on x-axis to the right of which the sum of
heights of the red bars is lower than the cutoff level for alpha (type I error). It
does so bywrapping aroundDsts.cquantile73 function (that runs the necessary
mathematical calculations) for us.

Once we get this cutoff point (number of successes, here number of Peter’s
wins) we can feed it as an input to getBetaForBinomialHA. Again, take a look at
Figure 4.11, it calculates for us the sum of the heights of the blue bars from the
far left (0 on x-axis) up-to the previously obtained cutoff point (the height of
that bar is also included). Let’s see how it works in practice.� �
xCutoff = getXForBinomRightTailProb(6, 0.5, 0.05)
probOfType2error2 = getBetaForBinomialHA(6, xCutoff, 5/6)
powerOfTest2 = getPower(probOfType2error2)

(probOfType2error, probOfType2error2, powerOfTest, powerOfTest2)� �
(0.66384, 0.6651020233196159, 0.33616, 0.3348979766803841)

They appear to be close enough which indicates that our calculations with the
computer simulation were correct.

BONUS

Sample size estimation.

As a bonus to this exercise let’s talk about sample sizes.

https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cquantile-Tuple%7BUnivariateDistribution,%20Real%7D

104 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

74 https://en.wikipedia
.org/wiki/Low-density
_lipoprotein

Notice that after solving this exercise we said that if Peter is actually a better
player than John and wins on average 5:1 with his opponent then still, most
likely we will not be able to show this with 6 tennis games (powerOfTest2 =
0.3349). So, if ten such experiments would be conducted around the world
for similar Peters and Johns then roughly only in three of them Peter would
be declared a better player after running statistical tests. That doesn’t sound
right.

In order to overcome this at the onset of their experiment a statistician should
also try to determine the proper sample size. First, he starts by asking himself
a question: “how big difference will make a difference”. This is an arbitrary
decision (at least a bit). Still, I think we can all agree that if Peter would win
with John on average 99:1 then this would make a practical difference (proba-
bly John would not like to play with him, what’s the point if he would be still
loosing). OK, and how about Peter wins with John on average 51:49. This does
not make a practical difference. Here they are pretty well matched and would
play with each other since it would be challenging enough for both of them
and each one could win a decent amount of games to remain satisfied. Most
likely, they would be even unaware of such a small difference.

In real life a physician could say, e.g. “I’m going to test a new drug that should
reduce the level of ‘bad cholesterol’ (LDL-C74). How big reduction would I
like to detect? Hmm, I know, 30 [mg/dL] or more because it reduces the risk
of a heart attack by 50%” or “By at least 25 [mg/dL] because the drug that is
already on the market reduces it by 25 [mg/dL]” (the numbers were made up
by me, I’m not a physician).

Anyway, once a statistician gets the difference that makes a difference he tries
to estimate the sample size bymaking some reasonable assumptions about rest
of the parameters.

In our tennis example we could write the following function for sample size
estimation� �
checks sample sizes between start and finish (inclusive, inclusive)
assumes that probH0 is 0.5
function getSampleSizeBinomial(probHA::Float64,

cutoffBeta::Float64=0.2,
cutoffAlpha::Float64=0.05,
twoTail::Bool=true,
start::Int=6, finish::Int=40)::Int

other probs are asserted in the component functions that use them
@assert (0 <= cutoffBeta <= 1) "cutoffBeta must be in range [0−1]"
@assert (start > 0 && finish > 0) "start and finish must be positive"
@assert (start < finish) "start must be smaller than finish"

https://en.wikipedia.org/wiki/Low-density_lipoprotein
https://en.wikipedia.org/wiki/Low-density_lipoprotein
https://en.wikipedia.org/wiki/Low-density_lipoprotein

STATISTICS - INTRODUCTION 105

probH0::Float64 = 0.5
sampleSize::Int = −99
xCutoffForAlpha::Int = 0
beta::Float64 = 1.0

if probH0 >= probHA
probHA = 1 − probHA

end
if twoTail

cutoffAlpha = cutoffAlpha / 2
end

for n in start:finish
xCutoffForAlpha = getXForBinomRightTailProb(n, probH0, cutoffAlpha)
beta = getBetaForBinomialHA(n, xCutoffForAlpha, probHA)
if beta <= cutoffBeta

sampleSize = n
break

end
end

return sampleSize
end� �
Maybe that is not the most efficient method, but it should do the trick.

First, we initialize a few variables that we will use later (probH0, sampleSize,
xCutoffForAlpha, beta). Then we compare probH0 with probHA. We do this since
getXForBinomRightTailProb and getBetaForBinomialHA should work correctly only
when probH0 < probHA (see the note under the code snippet with the functions
definitions). Therefore we need to deal with the case when it is otherwise (if
↪→probH0 >= probHA). We do this by subtracting probHA from 1 and making it our
new probHA (probHA = 1 − probHA). Because of that if we ever type, e.g. probHA =
1/6 = 0.166, then the function will transform it to probHA= 1 - 1/6 = 5/6 = 0.833
(since in our case the sample size required to demonstrate that Peter wins on
average 1 out of 6 games, is the same as the sample size required to show that
John wins on average 5 out of 6 games).

Once we are done with that we go to another checkup. If we are interested
in two-tailed probability (twoTail) then we divide the number (cutoffAlpha =
↪→0.05) by two. Before 0.05 went to the right side (see the black dotted line in
Figure 4.11), now we split it, 0.025 goes to the left side, 0.025 goes to the right
side of the probability distribution. This makes sense since before (see Sec-
tion 4.7.4) wemultiplied one-tailed probability by 2 to get the two-tailed prob-
ability, here we do the opposite. We can do that because the probability distri-
bution under𝐻0 (see the upper left panel in Figure 4.11) is symmetrical (that is
why youmustn’t change the value of probH0 in the body of getSampleSizeBinomial

106 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

↪→).

Finally, we use the previously defined functions (getXForBinomRightTailProb and
getBetaForBinomialHA) and conduct a series of experiments for different sample
sizes (between start and finish). Once the obtained beta fulfills the require-
ment (beta <= cutoffBeta) we set sampleSize to that value (sampleSize = n) and
stop subsequent search with a break statement (so if sampleSize of 6 is OK, we
will not look at larger sample sizes). If the for loop terminates without satisfy-
ing our requirements then the value of −99 (sampleSize was initialized with it)
is returned. This is an impossible value for a sample size. Therefore it points
out that the search failed. Let’s put it to the test.

In this exercise we said that Peter wins with John on average 5:1 (𝐻𝐴, prob
= 5/6 = 0.83). So what is the sample size necessary to confirm that with the
acceptable type I error (𝑎𝑙𝑝ℎ𝑎 ≤ 0.05) and type II error (𝛽 ≤ 0.2) cutoffs.� �
for one−tailed test
sampleSizeHA5to1 = getSampleSizeBinomial(5/6, 0.2, 0.05, false)
sampleSizeHA5to1� �
13

OK, so in order to be able to detect such a big difference (5:1, or even bigger)
between the two tennis players they would have to play 13 games with each
other (for one-tailed test). To put it into perspective and compare it with Fig-
ure 4.11 look at the graph below.

If our function worked well then the sum of the heights of the blue bars to the
right of the black dotted line should be ≥ 0.8 (power of the test) and to the left
should be ≤ 0.2 (type II error or 𝛽).� �
(

alternative to the line below:
1 − Dsts.cdf(Dsts.Binomial(13, 5/6), 9),
Dsts.pdf.(Dsts.Binomial(13, 5/6), 10:13) |> sum,
Dsts.cdf(Dsts.Binomial(13, 5/6), 9)

)� �
(0.841922621916511, 0.15807737808348937)

Yep, that’s correct. So, under those assumptions in order to confirm that Peter
is a better tennis player he would have to win ≥ 10 games out of 13.

And how about the two-tailed probability (we expect the number of games to
be greater).

STATISTICS - INTRODUCTION 107

Figure 4.12: Graphical
representation of type
II error and the power
of a test for 13 tennis
games between Peter
and John.

� �
for two−tailed test
getSampleSizeBinomial(5/6, 0.2, 0.05)� �
17

Here we need 17 games to be sufficiently sure we can prove Peter’s supremacy.

OK. Let’s give our getSampleSizeBinomial one more swing. How about if Peter
wins with John on average 4:2 (𝐻𝐴)?� �
for two−tailed test
sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05)
sampleSizeHA4to2� �
-99

Hmm, −99, so it will take more than 40 games (finish::Int = 40). Now, we can
either stop here (since playing 40 games in a row is too time and energy con-
suming so we resign) or increase the value for finish like so� �
for two−tailed test
sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05, true, 6, 100)
sampleSizeHA4to2� �

108 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

75 https://github.com/r
ikhuijzer/PowerAnaly
ses.jl
76 https://en.wikipedia
.org/wiki/MIT_License

72

Wow, if Peter is better than John in tennis and on averagewins 4:2 then it would
take 72 games to be sufficiently sure to prove it (who would have thought).

Anyway, if you ever find yourself in need to determine sample size, 𝛽 or the
power of a test (not only for one-sided tests as we did here) then you should
probably consider using PowerAnalyses.jl75 which is on MIT76 license.

OK, I think you deserve some rest before moving to the next chapter so why
won’t you take it now.

https://github.com/rikhuijzer/PowerAnalyses.jl
https://github.com/rikhuijzer/PowerAnalyses.jl
https://github.com/rikhuijzer/PowerAnalyses.jl
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License

1 https://docs.julialang
.org/en/v1/stdlib/Pkg/

2 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch05
3 https://pkgdocs.julial
ang.org/v1/environme
nts/

5 Comparisons - continuous data

OK, we finished the previous chapter with hypothesis testing and calculating
probabilities for binomial data (bi - two nomen - name), e.g. number of successes
(wins of Peter in tennis).

In this chapter we are going to explore comparisons between the groups con-
taining data on a continuous scale (like the height from Section 4.6).

5.1 Chapter imports

Later in this chapter we are going to use the following libraries� �
import CairoMakie as Cmk
import CSV as Csv
import DataFrames as Dfs
import Distributions as Dsts
import HypothesisTests as Ht
import MultipleTesting as Mt
import Random as Rand
import Statistics as Stats� �
If you want to follow along you should have them installed on your system. A
reminder of how to deal (install and such) with packages can be found here1.
But wait, you may prefer to use Project.toml and Manifest.toml files from the
code snippets for this chapter2 to install the required packages. The instruc-
tions you will find here3.

The imports will be placed in the code snippet when first used, but I thought
it is a good idea to put them here, after all imports should be at the top of your
file (so here they are at the top of the chapter). Moreover, that way they will
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from
the ∗.jl file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/

110 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4 https://docs.makie.o
rg/stable/examples/plo
tting_functions/hist/i
ndex.html#hist

5.2 One sample Student’s t-test

Imagine that in your town there is a small local brewery that produces quite
expensive but super tasty beer. You like it a lot, but you got an impression
that the producer is not being honest with their customers and instead of the
declared 500 [mL] of beer per bottle, he pours a bit less. Still, there is little you
can do to prove it. Or can you?

You bought 10 bottles of beer (ouch, that was expensive!) and measured the
volume of fluid in each of them. The results are as follows� �
a representative sample
beerVolumes = [504, 477, 484, 476, 519, 481, 453, 485, 487, 501]� �
Onagraph the volumedistribution looks like this (itwas drawnwithCmk.hist4
function).

Figure 5.1: Histogram
of beer volume dis-
tribution for 10 beer
(fictitious data).

You look at it and it seems to resemble a bit the bell shaped curve that we
discussed in the Section 4.6. This makes sense. Imagine your task is to pour
let’s say 1’000 bottles daily with 500 [mL] of beer in eachwith a bigmug (there
is an erasable mark at a bottle’s neck). Most likely the volumes would oscillate
around your goal volume of 500 [mL], but theywould not be exact. Sometimes
in a hurry you would add a bit more, sometimes a bit less (you could not

https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist

COMPARISONS - CONTINUOUS DATA 111

waste time to correct it). So it seems like a reasonable assumption that the
1’000 bottles fromour examplewould have a roughly bell shaped (aka normal)
distribution of volumes around the mean.

Now you can calculate the mean and standard deviation for the data� �
import Statistics as Stats

meanBeerVol = Stats.mean(beerVolumes)
stdBeerVol = Stats.std(beerVolumes)

(meanBeerVol, stdBeerVol)� �
(486.7, 18.055777776410274)

Hmm, on average there was 486.7 [mL] of beer per bottle, but the spread of
the data around the mean is also considerable (sd = 18.06 [mL]). The lowest
valuemeasuredwas 453 [mL], the highest valuemeasuredwas 519 [mL]. Still,
it seems that there is less beer per bottle than expected, but is it enough to draw
a conclusion that the real mean in the population of our 1’000 bottles is ≈ 487.0
[mL] and not 500 [mL] as it should be? Let’s try to test that using what we
already know about the normal distribution (see Section 4.6), the three sigma
rule (Section 4.6.1) and the Distributions package (Section 4.6.2).

Let’s assume for a moment that the true mean for volume of fluid in the pop-
ulation of 1’000 beer bottles is meanBeerVol = 486.7 [mL] and the true standard
deviation is stdBeerVol = 18.06 [mL]. That would be great because now, based
on what we’ve learned in Section 4.6.2 we can calculate the probability that
a random bottle of beer got >500 [mL] of fluid (or % of beer bottles in the
population that contain >500 [mL] of fluid). Let’s do it� �
import Distributions as Dsts

how many std. devs is value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64

return (value − mean)/sd
end

expectedBeerVolmL = 500

fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),
getZScore(expectedBeerVolmL, meanBeerVol, stdBeerVol))

fractionBeerAbove500mL = 1 − fractionBeerLessEq500mL

fractionBeerAbove500mL� �
0.2306808956300721

112 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

5 https://en.wikipedia.o
rg/wiki/Standard_error

I’m not going to explain the code above since for reference you can always
check Section 4.6.2. Still, under those assumptions roughly 0.23 or 23% of beer
bottles contain more than 500 [mL] of fluid. In other words under these as-
sumptions the probability that a random beer bottle contains >500 [mL] of
fluid is 0.23 or 23%.

There are 2 problems with that solution.

Problem 1

It is true that the mean from the sample is our best estimate of the mean in
the population (here 1’000 beer bottles poured daily). However, statisticians
proved that instead of the standard deviation from our sample we should use
the standard error of the mean5. It describes the spread of sample means
around the true population mean and it can be calculated as follows

𝑠𝑒𝑚 = 𝑠𝑑√𝑛 , where

sem - standard error of the mean

sd - standard deviation

n - number of observations in the sample

Let’s enclose it into Julia code� �
function getSem(vect::Vector{<:Real})::Float64

return Stats.std(vect) / sqrt(length(vect))
end� �
Now we get a better estimate of the probability� �
fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),

getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))
fractionBeerAbove500mL = 1 − fractionBeerLessEq500mL

fractionBeerAbove500mL� �
0.00992016769999493

Under those assumptions the probability that a beer bottle contains >500 [mL]
of fluid is roughly 0.01 or 1%.

So, to sum up. Here, we assumed that the true mean in the population is our
sample mean (𝜇 = meanBeerVol). Next, if we were to take many small samples
like beerVolumes and calculate their means then they would be normally dis-
tributed around the population mean (here 𝜇 = meanBeerVol) with 𝜎 (standard

https://en.wikipedia.org/wiki/Standard_error
https://en.wikipedia.org/wiki/Standard_error

COMPARISONS - CONTINUOUS DATA 113

6 https://en.wikipedia.o
rg/wiki/Student%27s_
t-distribution

7 https://juliastats.org
/Distributions.jl/stable
/univariate/#Distribut
ions.TDist
8 https://en.wikipedia.o
rg/wiki/Degrees_of_fre
edom_(statistics)

deviation in the population) = getSem(beerVolumes). Finally, using the three
sigma rule (see Section 4.6.1)we check if our hypothesizedmean (expectedBeerVolmL
↪→) lieswithin roughly 2 standard deviations (here approximately 2 sems) from
the assumed population mean (here 𝜇 = meanBeerVol).

Problem 2

The sample size is small (length(beerVolumes) = 10) so the underlying distribu-
tion is quasi-normal (quasi - almost, as it were). It is called a t-distribution6

(for comparison of an exemplary normal and t-distribution see the figure be-
low). Therefore to get a better estimate of the probability we should use a
t-distribution.

Figure 5.2: Compar-
ison of normal and
t-distribution with 4
degrees of freedom (df
= 4).

Luckily our Distributionspackage got the t-distribution included (see the docs7).
As you remember the normal distribution required two parameters that de-
scribed it: the mean and the standard deviation. The t-distribution requires
only the degrees of freedom8. The concept is fairly easy to understand. Imag-
ine that we recorded body masses of 3 people in the room: Paul, Peter, and
John.� �
peopleBodyMassesKg = [84, 94, 78]

sum(peopleBodyMassesKg)� �

https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)

114 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

9 https://en.wikipedia
.org/wiki/Code_of_Ha
mmurabi

256

As you can see the sum of those bodymasses is 256 [kg]. Notice, however, that
only two of those masses are independent or free to change. Once we know
any two of the bodymasses (e.g. 94, 78) and the sum: 256, then the third body
mass must be equal to sum(peopleBodyMassesKg) − 94 − 78 = 84 (it is determined,
it cannot just freely take any value). So in order to calculate the degrees of
freedom we type length(peopleBodyMassesKg) − 1 = 2. Since our sample size is
equal to length(beerVolumes) = 10 then it will follow a t-distribution with length
↪→(beerVolumes) − 1 = 9 degrees of freedom.

So the probability that a beer bottle contains >500 [mL] of fluid is� �
function getDf(vect::Vector{<:Real})::Int

return length(vect) − 1
end

fractionBeerLessEq500mL = Dsts.cdf(Dsts.TDist(getDf(beerVolumes)),
getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))

fractionBeerAbove500mL = 1 − fractionBeerLessEq500mL

fractionBeerAbove500mL� �
0.022397253591088906

Note: The z-score (number of standard deviations above or below the mean) for
a t-distribution is called the t-score or t-statistics (it is calculatedwith sem instead
of sd).

Finally, we got the result. Based on our representative sample (beerVolumes) and
the assumptions we made we can see that the probability that a random beer
contains>500 [mL] of fluid (500 [mL] is stated on a label) is fractionBeerAbove500mL
↪→ = 0.022 or 2.2% (remember, this is one-tailed probability, the two-tailed
probability is 0.022 * 2 = 0.044 = 4.4%).

Given that the cutoff level for 𝛼 (type I error) from Section 4.7.5 is 0.05 we
can reject our 𝐻0 (the assumption that 500 [mL] comes from the population
with themean approximated by 𝜇 = meanBeerVol= 486.7 [mL] and the standard
deviation approximated by 𝜎 = sem = 5.71 [mL]).

In conclusion, our hunch was right (“…you got an impression that the pro-
ducer is not being honest with their customers…”). The owner of the local
brewery is dishonest and intentionally pours slightly less beer (on average
expectedBeerVolmL − meanBeerVol = 13.0 [mL]). Now we can go to him and get
our money back, or alarm the proper authorities for that monstrous crime.
Fun fact: the story has it that the code of Hammurabi9 (circa 1750 BC) was the first to

https://en.wikipedia.org/wiki/Code_of_Hammurabi
https://en.wikipedia.org/wiki/Code_of_Hammurabi
https://en.wikipedia.org/wiki/Code_of_Hammurabi

COMPARISONS - CONTINUOUS DATA 115

10 https://juliastats.org
/HypothesisTests.jl/st
able/
11 https://juliastats.org
/HypothesisTests.jl/st
able/parametric/#t-test

punish for diluting a beer with water (although it seems to be more of a legend). Still,
this is like 2-3% beer (≈13/500 = 0.026) in a bottle less than it should be and
the two-tailed probability (fractionBeerAbove500mL ∗ 2 = 0.045) is not much less
than the cutoff for type 1 error equal to 0.05 (we may want to collect a bigger
sample and change the cutoff to 0.01).

5.2.1 HypothesisTests package

The above paragraphs were to further your understanding of the topic. In
practice you can do this much faster using HypothesisTests10 package.

In our beer example you could go with this short snippet (see the docs11 for
Ht.OneSampleTTest)� �
import HypothesisTests as Ht

Ht.OneSampleTTest(beerVolumes, expectedBeerVolmL)� �
One sample t−test
−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Mean
value under h_0: 500
point estimate: 486.7
95% confidence interval: (473.8, 499.6)

Test summary:
outcome with 95% confidence: reject h_0
two−sided p−value: 0.0448

Details:
number of observations: 10
t−statistic: −2.329353706113303
degrees of freedom: 9
empirical standard error: 5.70973826993069

Let’s compare it with our previous results� �
(
expectedBeerVolmL, # value under h_0
meanBeerVol, # point estimate
fractionBeerAbove500mL ∗ 2, # two−sided p−value
getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)),# t−statistic
getDf(beerVolumes), # degrees of freedom
getSem(beerVolumes) # empirical standard error
)� �

https://juliastats.org/HypothesisTests.jl/stable/
https://juliastats.org/HypothesisTests.jl/stable/
https://juliastats.org/HypothesisTests.jl/stable/
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test

116 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

12 https://en.wikipedia
.org/wiki/Confidence_i
nterval

13 https://en.wikipedia
.org/wiki/Low-density
lipoprotein#Normal
ranges

14 https://en.wikipedia
.org/wiki/William_Seal
y_Gosset

(500, 486.7, 0.04479450718217781, 2.329353706113303, 9, 5.70973826993069)

The numbers are pretty much the same (and they should be if the previous
explanation was right). The t-statistic is positive in our case because getZScore
subtracts mean from value (value − mean) and some packages (like HypothesisTests
↪→) swap the numbers.

The value that needs to be additionally explained is the 95% confidence inter-
val12 from the output of HypothesisTests above. All it means is that: if we were
to run our experiment with 10 beers 100 times and calculate 95% confidence
intervals 100 times then 95 of the intervals would contain the true mean from
the population. Sometimes people (over?)simplify it and say that this inter-
val [in our case (473.8, 499.6)] contains the true mean from the population
with probability of 95% (but that isn’t necessarily the same what was stated
in the previous sentence). The narrower interval means better, more precise
estimate. If the difference is statistically significant (p-value ≤ 0.05) then the
interval should not contain the postulated mean (as it is in our case).

Notice that the obtained 95% confidence interval (473.8, 499.6) may indicate
that the true average volume of fluid in a bottle of beer could be as high as
499.6 [mL] (so thiswould hardlymake a practical difference) or as low as 473.8
[mL] (a small, ~6%, but a practical difference). In the case of our beer example
it is just a curious fact, but imagine you are testing a new drug lowering the
‘bad cholesterol’ (LDL-C) level (the one that was mentioned in Section 4.9.5).
Let’s say you got a 95% confidence interval for the reduction of (-132, +2).
The interval encompasses 0, so the true effect may be 0 and you cannot reject
𝐻0 under those assumptions (p-value would be greater than 0.05). However,
the interval is broad, and its lower value is -132, which means that the true
reduction level after applying this drug could be even -132 [mg/dL]. Based on
the data from this table13 I guess this could have a big therapeutic meaning.
So, you might want to consider performing another experiment on the effects
of the drug, but this time you should take a bigger sample to dispel the doubt
(bigger sample size narrows the 95% confidence interval).

In general one sample t-test is used to check if a sample comes from a popula-
tion with the postulated mean (in our case in 𝐻0 the postulated mean was 500
[mL]). However, I prefer to look at it from the different perspective (the other
end) hencemy explanation above. The t-test is named afterWilliam SealyGos-
set14 that published his papers under the pen-name Student, hence it is also
called a Student’s t-test.

https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Low-density_lipoprotein#Normal_ranges
https://en.wikipedia.org/wiki/Low-density_lipoprotein#Normal_ranges
https://en.wikipedia.org/wiki/Low-density_lipoprotein#Normal_ranges
https://en.wikipedia.org/wiki/Low-density_lipoprotein#Normal_ranges
https://en.wikipedia.org/wiki/William_Sealy_Gosset
https://en.wikipedia.org/wiki/William_Sealy_Gosset
https://en.wikipedia.org/wiki/William_Sealy_Gosset

COMPARISONS - CONTINUOUS DATA 117

15 https://en.wikipedia
.org/wiki/Parametric_s
tatistics

5.2.2 Checking the assumptions

Hopefully, the explanations above were clear enough. Still, we shouldn’t just
jump into performing a test blindly, first we should test its assumptions (see
figure below).

Figure 5.3: Checking
assumptions of a
statistical test before
running it.

First of all we start by choosing a test to perform. Usually it is a paramet-
ric test15, i.e. one that assumes some specific data distribution (e.g. normal).
Then we check our assumptions. If they hold we proceed with our test. Other-
wise we can either transform the data (e.g. take a logarithm from each value)
or choose a different test (the one that got different assumptions or just less of

https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Parametric_statistics

118 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

16 https://en.wikipedia
.org/wiki/Nonparamet
ric_statistics

17 https://en.wikipedia
.org/wiki/Student%27
s_t-test#Assumptions
18 https://en.wikipedia
.org/wiki/Shapiro%E2
%80%93Wilk_test
19 https://en.wikipedia
.org/wiki/Kolmogorov
%E2%80%93Smirnov_t
est
20 https://en.wikipedia
.org/wiki/Wilcoxon_sig
ned-rank_test
21 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#
Kolmogorov-Smirnov-t
est
22 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#
Wilcoxon-signed-ran
k-test

them to fulfill). Wewill see an example of a data transformation, and the possi-
ble benefits it can bring us, later in this book (see the upcoming Section 7.8.1).
Anyway, this different test usually belongs to so called non-parametric tests16,
i.e. tests that make less assumptions about the data, but are likely to be slightly
less powerful (you remember the power of a test from Section 4.7.5, right?).

In our case a Student’s t-test requires (among others17) the data to be normally
distributed. This is usually verified with Shapiro-Wilk test18 or Kolmogorov-
Smirnov test19. As an alternative to Student’s t-test (when the normality as-
sumption does not hold) aWilcoxon test20 is often performed (of course before
you use it you should check its assumptions, see Figure 5.3 above).

BothKolmogorov-Smirnov (see this docs21) andWilcoxon test (see that docs22)
are at our disposal in HypothesisTests package. Behold� �
Ht.ExactOneSampleKSTest(beerVolumes,

Dsts.Normal(meanBeerVol, stdBeerVol))� �
Exact one sample Kolmogorov−Smirnov test
−−
Population details:

parameter of interest: Supremum of CDF differences
value under h_0: 0.0
point estimate: 0.193372

Test summary:
outcome with 95% confidence: fail to reject h_0
two−sided p−value: 0.7826

Details:
number of observations: 10

So it seems we got no grounds to reject the 𝐻0 that states that our data are
normally distributed (p-value > 0.05) and we were right to perform our one-
sample Student’s t-test. Of course, I had checked the assumption before I con-
ducted the test (Ht.OneSampleTTest). I didn’t mention it there because I didn’t
want to prolong my explanation (and diverge from the topic) back there.

And now a question. Is the boring assumption check before a statistical test
really necessary?

If you want your conclusions to reflect the reality well then yes. So, even
though a statistical textbook for brevity may not check the assumptions of a
method you should do it in your analyses if your care about the correctness of
your judgment.

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Student%27s_t-test#Assumptions
https://en.wikipedia.org/wiki/Student%27s_t-test#Assumptions
https://en.wikipedia.org/wiki/Student%27s_t-test#Assumptions
https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-Smirnov-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-Smirnov-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-Smirnov-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-Smirnov-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-Smirnov-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test

COMPARISONS - CONTINUOUS DATA 119

23 https://en.wikipedia
.org/wiki/Master_of_Sc
ience

24 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch05
25 https://csv.juliadata.
org/stable/
26 https://dataframes.jul
iadata.org/stable/
27 https://en.wikipedia
.org/wiki/List_of_spre
adsheet_software

28 https://dataframes.jul
iadata.org/stable/lib/fu
nctions/#DataAPI.descr
ibe

5.3 Two samples Student’s t-test

Imagine a friend that studies biology told you that he had conducted a research
in order to write a dissertation and earn a master’s degree23. As part of the
research he tested a new drug (drug X) onmice. He hopes the drug is capable
to reduce the body weights of the animals (and if so, then in a distant future it
might be even tested on humans). He asks you for help with the data analysis.
The results obtained by him are as follows.� �
import CSV as Csv
import DataFrames as Dfs

if you are in 'code_snippets' folder, then use: "./ch05/miceBwt.csv"
if you are in 'ch05' folder, then use: "./miceBwt.csv"
miceBwt = Csv.read("./code_snippets/ch05/miceBwt.csv", Dfs.DataFrame)
first(miceBwt, 3)� �

Table 5.1: Body mass
[g] of mice (fictitious
data).

noDrugX drugX

26 26
26 25
24 25

Note: The path specification above should work fine on GNU/Linux operating
systems. I don’t know about other OSs.

Here, we opened a table with a made up data for mice body weight [g] (this
data set can be found here24). For that we used two new packages (CSV25,
and DataFrames26).

A ∗.csv file can be opened and created, e.g. with a spreadsheet27 program.
Here, we read it as a DataFrame, i.e. a structure that resembles an array from
Section 3.3.7. Since the DataFrame could potentially have thousands of rows we
displayed only the first three (to check that everything succeeded) using the
first function.

Note: We can check the size of a DataFrame with size function which returns the
information in a friendly (numRows, numCols) format.

OK, let’s take a look at some descriptive statistics using describe28 function.� �
Dfs.describe(miceBwt)� �

https://en.wikipedia.org/wiki/Master_of_Science
https://en.wikipedia.org/wiki/Master_of_Science
https://en.wikipedia.org/wiki/Master_of_Science
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
https://csv.juliadata.org/stable/
https://csv.juliadata.org/stable/
https://dataframes.juliadata.org/stable/
https://dataframes.juliadata.org/stable/
https://en.wikipedia.org/wiki/List_of_spreadsheet_software
https://en.wikipedia.org/wiki/List_of_spreadsheet_software
https://en.wikipedia.org/wiki/List_of_spreadsheet_software
https://dataframes.juliadata.org/stable/lib/functions/#DataAPI.describe
https://dataframes.juliadata.org/stable/lib/functions/#DataAPI.describe
https://dataframes.juliadata.org/stable/lib/functions/#DataAPI.describe
https://dataframes.juliadata.org/stable/lib/functions/#DataAPI.describe

120 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Table 5.2: Body mass
of mice. Descriptive
statistics.

variable mean min median max nmissing eltype

noDrugX 25.5 23 25.5 29 0 Int64
drugX 24.1 21 24.5 26 0 Int64

It appears that mice from group drugX got somewhat lower body weight. But
that could be just a coincidence. Anyway, how should we analyze this data?
Well, it depends on the experiment design.

Since we have 10 rows (size(miceBwt)[1]). Then, either:

• we had 10 mice at the beginning. The mice were numbered randomly 1:10
on their tails. Thenwemeasured their initial weight (noDrugX), administered
the drug and measured their body weight after, e.g. one week (drugX), or

• we had 20 mice at the beginning. The mice were numbered randomly 1:20
on their tails. Then first 10 of them (numbers 1:10) became controls (regular
food, group: noDrugX) and the other 10 (11:20) received additionally drugX
(hence group drugX).

Interestingly, the experimentalmodels deserve slightly different statisticalmethod-
ology. In the first case we will perform a paired samples t-test, whereas in the
other case we will use an unpaired samples t-test. Ready, let’s go.

5.3.1 Paired samples Student’s t-test

Running a paired Student’s t-test with HypothesisTests package is very simple.
We just have to send the specific column(s) to the appropriate function. Col-
umn selection can be done in one of the few ways, e.g. miceBwt[:, "noDrugX"]
(similarly to array indexing in Section 3.3.7 :means all rows, note that this form
copies the column), miceBwt[!, "noDrugX"] (! instead of :, no copying), miceBwt.
↪→noDrugX (again, no copying).

Note: Copying a column is advantageous when a function maymodify the input
data, but it is less effective for big data frames. If you wonder does a function
changes its input then for starter look at its name and compare it with the con-
vention we discussed in Section 3.4.4. Still, to be sure you would have to examine
the function’s code.

And now we can finally run the paired t-test.� �
miceBwt.noDrugX or miceBwt.noDrugX returns a column as a Vector
Ht.OneSampleTTest(miceBwt.noDrugX, miceBwt.drugX)� �

COMPARISONS - CONTINUOUS DATA 121

One sample t−test
−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Mean
value under h_0: 0
point estimate: 1.4
95% confidence interval: (0.04271, 2.757)

Test summary:
outcome with 95% confidence: reject h_0
two−sided p−value: 0.0445

Details:
number of observations: 10
t−statistic: 2.3333333333333335
degrees of freedom: 9
empirical standard error: 0.6

And voila. We got the result. It seems that drugX actually does lower the body
mass of the animals (𝑝 ≤ 0.05). But wait, didn’t we want to do a (paired)
two-samples t-test and not OneSampleTTest? Yes, we did. Interestingly enough,
a paired t-test is actually a one-sample t-test for the difference. Observe.� �
miceBwt.noDrugX or miceBwt.noDrugX returns a column as a Vector
hence we can do element−wise subtraction using dot syntax
miceBwtDiff = miceBwt.noDrugX .− miceBwt.drugX
Ht.OneSampleTTest(miceBwtDiff)� �
One sample t−test
−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Mean
value under h_0: 0
point estimate: 1.4
95% confidence interval: (0.04271, 2.757)

Test summary:
outcome with 95% confidence: reject h_0
two−sided p−value: 0.0445

Details:
number of observations: 10
t−statistic: 2.3333333333333335
degrees of freedom: 9
empirical standard error: 0.6

Here, we used the familiar dot syntax from Section 3.6.5 to obtain the differ-

122 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

ences and then fed the result to OneSampleTTest from the previous section (see
Section 5.2). The output is the same as in the previous code snippet.

I don’t know about you, but when I was a student I often wondered when to
choose a paired and when an unpaired t-test. Now I finally know, and it is so
simple. Too bad that most statistical programs/packages separate paired t-test
from one-sample t-test (unlike the authors of the HypothesisTests package).

Anyway, this also demonstrates an important feature of the data. The data
points in both columns/groups need to be properly ordered, e.g. in our case
it makes little sense to subtract body mass of a mouse with 1 on its tail from a
mouse with 5 on its tail, right? Doing so has just as little sense as subtracting
it from mouse number 6, 7, 8, etc. There is only one clearly good way to do
this subtraction and this is to subtract mouse number 1 (drugX) from mouse
number 1 (noDrugX). So, if you ever wonder a paired or unpaired t-test then
think if there is a clearly better way to subtract one column of data from the
other. If so, then you should go with the paired t-test, otherwise choose the
unpaired t-test.

BTW, do you remember how in Section 5.2.2 we checked the assumptions of
our oneSampleTTest, well it turns out that here we should do the same. However,
this time instead of Kolmogorov-Smirnov test I’m going to use Shapiro-Wilk’s
normality test from HypothesisTests package (generally Shapiro-Wilk is more
powerful).� �
Ht.ShapiroWilkTest(miceBwtDiff)� �
Shapiro−Wilk normality test
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Squared correlation of data and expected order
statistics of N(0,1) (W)

value under h_0: 1.0
point estimate: 0.94181

Test summary:
outcome with 95% confidence: fail to reject h_0
one−sided p−value: 0.5733

Details:
number of observations: 10
censored ratio: 0.0
W−statistic: 0.94181

There, all normal (p > 0.05). So, wewere right to perform the test. Still, the or-
der was incorrect, in general you should remember to check the assumptions

COMPARISONS - CONTINUOUS DATA 123

29 https://en.wikipedia
.org/wiki/Wilcoxon_sig
ned-rank_test

30 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#
Wilcoxon-signed-ran
k-test

31 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#Fl
igner-Killeen-test

first and then proceed with the test. In case the normality assumption did
not hold we should consider doing a Wilcoxon test29 (non-parametric test),
e.g. like so Ht.SignedRankTest(df.noDrugX, df.drugX) or Ht.SignedRankTest(miceBwtDiff
↪→). More info on the test can be found in the link above or on the pages of
HypothesisTests package (see here30).

5.3.2 Unpaired samples Student’s t-test

OK, now it’s time to move to the other experimental model. A reminder, here
we discuss the following situation:

• we had 20 mice at the beginning. The mice were numbered randomly 1:20
on their tails. Then first 10 of them (numbers 1:10) became controls (regular
food, group: noDrugX) and the other 10 (11:20) received additionally drugX
(hence group drugX).

Here we will compare mice noDrugX (miceID: 1:10) with mice drugX (miceID:
11:20) using an unpaired samples t-test, but this time wewill start by checking
the assumptions.

First the normality assumption.� �
function getSWtestPval(v::Vector{<:Real})::Float64

return Ht.ShapiroWilkTest(v) |> Ht.pvalue
end

for brevity we will extract just the p−values
(

getSWtestPval(miceBwt.noDrugX),
getSWtestPval(miceBwt.drugX)

)� �
(0.6833331724399464, 0.3254417851120679)

OK, no reason to doubt the normality (p-vals > 0.05). The other assumption
that we may test is homogeneity of variance. Homogeneity means that the
spread of data around themean in each group is similar (var(gr1)≈var(gr2)).
Here, we are going to use Fligner-Killeen31 test from the HypothesisTests pack-
age.� �
Ht.FlignerKilleenTest(miceBwt.noDrugX, miceBwt.drugX)� �
Fligner−Killeen test
−−−−−−−−−−−−−−−−−−−−

https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-signed-rank-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fligner-Killeen-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fligner-Killeen-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fligner-Killeen-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fligner-Killeen-test

124 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Population details:
parameter of interest: Variances
value under h_0: "all equal"
point estimate: NaN

Test summary:
outcome with 95% confidence: fail to reject h_0
p−value: 1.0000

Details:
number of observations: [10, 10]
FK statistic: 4.76242e−31
degrees of freedom: 1

Also this time, the assumption is fulfilled (p−value > 0.05), and now for the
unpaired test.� �
Ht.EqualVarianceTTest(

miceBwt.noDrugX, miceBwt.drugX)� �
Two sample t−test (equal variance)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Mean difference
value under h_0: 0
point estimate: 1.4
95% confidence interval: (−0.1877, 2.988)

Test summary:
outcome with 95% confidence: fail to reject h_0
two−sided p−value: 0.0804

Details:
number of observations: [10,10]
t−statistic: 1.8525405838431677
degrees of freedom: 18
empirical standard error: 0.7557189365836423

It appears there is not enough evidence to reject the 𝐻0 (the mean difference
is equal to 0) on the cutoff level of 0.05. So, how could that be, the means in
both groups are still the same, i.e. Stats.mean(miceBwt.noDrugX) = 25.5 and Stats.
↪→mean(miceBwt.drugX)= 24.1, yet we got different results (reject 𝐻0 from paired
t-test, not reject 𝐻0 from unpaired t-test). Well, it is because we calculated
slightly different things and because using paired samples usually removes
some between subjects variability.

In the case of unpaired t-test we:

COMPARISONS - CONTINUOUS DATA 125

32 https://en.wikipedia
.org/wiki/Pythagorea
n_theorem

1. assume that the difference between the means under 𝐻0 is equal to 0.
2. calculate the observed difference between the means, Stats.mean(miceBwt.

↪→noDrugX) − Stats.mean(miceBwt.drugX) = 1.4.
3. calculate the sem(with a slightly different formula than for the one-sample/paired

t-test)
4. obtain the z-score (in case of t-test it is named t-score or t-statistics)
5. calculate the probability for the t-statistics (slightly different calculation of

the degrees of freedom)

When compared with the methodology for one-sample t-test from Section 5.2
it differs only with respect to the points 3, 4 and 5 above. Observe. First the
functions� �
function getSem(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64

sem1::Float64 = getSem(v1)
sem2::Float64 = getSem(v2)
return sqrt((sem1^2) + (sem2^2))

end

function getDf(v1::Vector{<:Real}, v2::Vector{<:Real})::Int
return getDf(v1) + getDf(v2)

end� �
There are different formulas for pooled sem (standard error of the mean), but
I only managed to remember this one because it reminded me the famous
Pythagorean theorem32, i.e. 𝑐2 = 𝑎2 + 𝑏2, so 𝑐 =

√
𝑎2 + 𝑏2, that I learned in

a primary school. As for the degrees of freedom they are just the sum of the
degrees of freedom for each of the vectors. OK, so now the calculations� �
meanDiffBwtH0 = 0
meanDiffBwt = Stats.mean(miceBwt.noDrugX) − Stats.mean(miceBwt.drugX)
pooledSemBwt = getSem(miceBwt.noDrugX, miceBwt.drugX)
zScoreBwt = getZScore(meanDiffBwtH0, meanDiffBwt, pooledSemBwt)
dfBwt = getDf(miceBwt.noDrugX, miceBwt.drugX)
pValBwt = Dsts.cdf(Dsts.TDist(dfBwt), zScoreBwt) ∗ 2� �
And finally the result that you may compare with the output of the unpaired
t-test above and the methodology for the one-sample t-test from Section 5.2.� �
(

meanDiffBwtH0, # value under h_0
round(meanDiffBwt, digits = 4), # point estimate
round(pooledSemBwt, digits = 4), # empirical standard error
to get a positive zScore we should have calculated it as:
getZScore(meanDiffBwt, meanDiffBwtH0, pooledSemBwt)
round(zScoreBwt, digits = 4), # t−statistic

https://en.wikipedia.org/wiki/Pythagorean_theorem
https://en.wikipedia.org/wiki/Pythagorean_theorem
https://en.wikipedia.org/wiki/Pythagorean_theorem

126 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

dfBwt, # degrees of freedom
round(pValBwt, digits=4) # two−sided p−value

)� �
(0, 1.4, 0.7557, −1.8525, 18, 0.0804)

Amazing. In the case of the unpaired two-sample t-testweuse the samemethod-
ology and reasoning as we did in the case of the one-sample t-test from Sec-
tion 5.2 (only functions for sem and df changed slightly). Given the above I
recommend you get back to the section Section 5.2 and make sure you under-
stand the explanations presented there (if you haven’t done this already).

As an alternative to our unpaired t-testwe should consider Ht.UnequalVarianceTTest
↪→ (if the variances are not equal) or Ht.MannWhitneyUTest (if both the normality
and homogeneity assumptions do not hold).

5.4 One-way ANOVA

One-wayANOVA is a technique to compare two ormore groups of continuous
data. It allows us to tell if all the groups are alike or not based on the spread
of the data around the mean(s).

Let’s start with something familiar. Do you still remember our tennis players
Peter and John from Section 4.7.1. Well, guess what, they work at two different
biological institutes. The institutes independently test a new weight reducing
drug, called drug Y, that is believed to reduce body weight of an animal by
roughly 23%. The drug administration is fairly simple. You just dilute it in
water and leave it in a cage for mice to drink it.

So both our friends independently run the following experiment: a researcher
takes eight mice, writes at random numbers at their tails (1:8), and decides
that the mice 1:4 will drink pure water, and the mice 5:8 will drink water with
the drug. After a week body weights of all mice are recorded.

As said, Peter and John run the experiments independently not knowing one
about the other. After a week Peter noticed that he messed things up and did
not give the drug to mice (when diluted the drug is colorless and by accident
he took the wrong bottle). It happened, still let’s compare the results that were
obtained by both our friends.� �
import Random as Rand

Peter's mice, experiment 1 (ex1)
Rand.seed!(321)

COMPARISONS - CONTINUOUS DATA 127

33 https://en.wikipedia
.org/wiki/Placebo

ex1BwtsWater = Rand.rand(Dsts.Normal(25, 3), 4)
ex1BwtsPlacebo = Rand.rand(Dsts.Normal(25, 3), 4)

John's mice, experiment 2 (ex2)
ex2BwtsWater = Rand.rand(Dsts.Normal(25, 3), 4)
ex2BwtsDrugY = Rand.rand(Dsts.Normal(25 ∗ 0.77, 3), 4)� �
In Peter’s case both mice groups came from the same population Dsts.Normal
↪→(25, 3) (𝜇 = 25, 𝜎 = 3) since they both ate and drunk the same stuff. For
need of different name the other group is named placebo33.

In John’s case the other group comes from a different distribution (e.g. the one
where body weight is reduced on average by 23%, hence 𝜇 = 25 ∗ 0.77).

Let’s see the results side by side on a graph.

Figure 5.4: The results
of drug Y application
on body weights of
laboratory mice.

I don’t know about you, butmy first impression is that the data points aremore
scattered around in John’s experiment. Let’s add some means to the graph to
make it more obvious.

Indeed, with the lines (especially the overall means) the difference in spread
of the data points seems to be even more evident. Notice an interesting fact, in
the case of water and placebo the group means are closer to each other, and to
the overall mean. This makes sense, after all the animals ate and drunk exactly

https://en.wikipedia.org/wiki/Placebo
https://en.wikipedia.org/wiki/Placebo

128 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 5.5: The results
of drug Y application
on body weights of
laboratory mice (with
group and overall
means).

the same stuff, so they belong to the same population. On the other hand in the
case of the two populations (water and drugY) the group means differ from
the overall mean (again, think of it for a moment and convince yourself that
it makes sense). Since we got Julia on our side we could even try to express
this spread of data with numbers. First, the spread of data points around the
group means� �
function getAbsDiffs(v::Vector{<:Real})::Vector{<:Real}

return abs.(Stats.mean(v) .− v)
end

function getAbsPointDiffsFromGroupMeans(
v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
return vcat(getAbsDiffs(v1), getAbsDiffs(v2))

end

ex1withinGroupsSpread = getAbsPointDiffsFromGroupMeans(
ex1BwtsWater, ex1BwtsPlacebo)

ex2withinGroupsSpread = getAbsPointDiffsFromGroupMeans(
ex2BwtsWater, ex2BwtsDrugY)

ex1AvgWithinGroupsSpread = Stats.mean(ex1withinGroupsSpread)
ex2AvgWithingGroupsSpread = Stats.mean(ex2withinGroupsSpread)

(ex1AvgWithinGroupsSpread, ex2AvgWithingGroupsSpread)� �

COMPARISONS - CONTINUOUS DATA 129

34 https://docs.julialang
.org/en/v1/base/arrays
/#Base.vcat

(1.941755009754579, 2.87288915817597)

The code is pretty simple. Herewe calculate the distance of data points around
the groupmeans. Sincewe are not interested in a sign of a difference [+ (above),
− (below) the mean] we use abs function. We used a similar methodology
when we calculated absDiffsStudA and absDiffsStudB in Section 4.6. This is as if
we measured the distances from the group means in Figure 5.5 with a ruler
and took the average of them. The only new part is the vcat34 function. All
it does is it glues two vectors together, like: vcat([1, 2], [3, 4]) gives us [1,
↪→2, 3, 4]. Anyway, the average distance of a point from a group mean is 1.9
[g] for experiment 1 (left panel in Figure 5.5). For experiment 2 (right panel
in Figure 5.5) it is equal to 2.9 [g]. That is nice, as it follows our expectations.
However, AvgWithinGroupsSpread by itself is not enough since sooner or later in
experiment 1 (hence prefix ex1−) we may encounter (a) population(s) with a
wide natural spread of the data. Therefore, we need a more robust metric.

This is were the average spread of groupmeans around the overall mean could
be useful. Let’s get to it, we will start with these functions� �
function repVectElts(v::Vector{T}, times::Vector{Int})::Vector{T} where T

@assert (length(v) == length(times)) "length(v) not equal length(times)"
@assert all(map(x −> x > 0, times)) "times elts must be positive"
result::Vector{T} = Vector{eltype(v)}(undef, sum(times))
currInd::Int = 1
for i in eachindex(v)

for _ in 1:times[i]
result[currInd] = v[i]
currInd += 1

end
end
return result

end

function getAbsGroupDiffsFromOverallMean(
v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
overallMean::Float64 = Stats.mean(vcat(v1, v2))
groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
absGroupDiffs::Vector{<:Real} = abs.(overallMean .− groupMeans)
absGroupDiffs = repVectElts(absGroupDiffs, map(length, [v1, v2]))
return absGroupDiffs

end� �
The function repVectElts is a helper function. It is slightly complicated and I
will not explain it in detail. Just treat it as any other function from a library. A
function you know only by name, input, and output. A function that you are

https://docs.julialang.org/en/v1/base/arrays/#Base.vcat
https://docs.julialang.org/en/v1/base/arrays/#Base.vcat
https://docs.julialang.org/en/v1/base/arrays/#Base.vcat

130 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

not aware of its insides (of course if you really want you can figure them out
by yourself). All it does is it takes two vectors v and times, then it replicates
each element of v a number of times specified in times like so: repVectElts([10,
↪→20], [1, 2]) output [10, 20, 20]. And this is actually all you care about right
now.

As for the getAbsGroupDiffsFromOverallMean it does exactly what it says. It sub-
tracts groupmeans from the overall mean (overallMean .− groupMeans) and takes
absolute values of that [abs.(]. Then it repeats each difference asmany times as
there are observations in the group repVectElts(absGroupDiffs, map(length, [v1,
↪→v2])) (as if every single point in a group was that far away from the overall
mean). This is what it returns to us.

OK, time to use the last function, behold� �
ex1groupSpreadFromOverallMean = getAbsGroupDiffsFromOverallMean(

ex1BwtsWater, ex1BwtsPlacebo)
ex2groupSpreadFromOverallMean = getAbsGroupDiffsFromOverallMean(

ex2BwtsWater, ex2BwtsDrugY)

ex1AvgGroupSpreadFromOverallMean = Stats.mean(ex1groupSpreadFromOverallMean)
ex2AvgGroupSpreadFromOverallMean = Stats.mean(ex2groupSpreadFromOverallMean)

(ex1AvgGroupSpreadFromOverallMean, ex2AvgGroupSpreadFromOverallMean)� �
(0.597596847858199, 3.6750594521844278)

OK, we got it. The average group mean spread around the overall mean is
0.6 [g] for experiment 1 (left panel in Figure 5.5) and 3.7 [g] for experiment
2 (right panel in Figure 5.5). Again, the values are as we expected them to be
based on our intuition.

Now, we can use the obtained before AvgWithinGroupSpread as a reference point
for AvgGroupSpreadFromOverallMean like so� �
LStatisticEx1 = ex1AvgGroupSpreadFromOverallMean / ex1AvgWithinGroupsSpread
LStatisticEx2 = ex2AvgGroupSpreadFromOverallMean / ex2AvgWithingGroupsSpread

(LStatisticEx1, LStatisticEx2)� �
(0.3077611979143188, 1.2792207599536367)

Here, we calculated a so called L-Statistic (LStatistic). I made the name up,
because that is the first name that came to my mind. Perhaps it is because my
family name is Lukaszuk or maybe because I’m selfish. Anyway, the higher

COMPARISONS - CONTINUOUS DATA 131

35 https://en.wikipedia
.org/wiki/Ronald_Fis
her

the L-statistic (so the ratio of group spread around the overall mean to within
group spread) the smaller the probability that such a big differencewas caused
by a chance alone (hmm, I think I said something along those lines in one of
the previous chapters). If only we could reliably determine the cutoff point for
my LStatistic (we will try to do so in Section 5.8.2).

Luckily, there is no point for us to do that since one-way ANOVA relies on
a similar metric called F-statistic (BTW. Did I mention that the ANOVA was
developed by Ronald Fisher35? Of course, in that case others bestowed the
name in his honor). Observe. First, experiment 1:� �
Ht.OneWayANOVATest(ex1BwtsWater, ex1BwtsPlacebo)� �
One−way analysis of variance (ANOVA) test
−−−
Population details:

parameter of interest: Means
value under h_0: "all equal"
point estimate: NaN

Test summary:
outcome with 95% confidence: fail to reject h_0
p−value: 0.5738

Details:
number of observations: [4, 4]
F statistic: 0.353601
degrees of freedom: (1, 6)

Here, my made up LStatistic was 0.31 whereas the F-Statistic is 0.35, so kind
of close. Chances are they measure the same thing but using slightly differ-
ent methodology. Here, the p-value (p > 0.05) demonstrates that the groups
may come from the same population (or at least that we do not have enough
evidence to claim otherwise).

OK, now time for experiment 2:� �
Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY)� �
One−way analysis of variance (ANOVA) test
−−−
Population details:

parameter of interest: Means
value under h_0: "all equal"
point estimate: NaN

Test summary:

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher

132 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

outcome with 95% confidence: reject h_0
p−value: 0.0428

Details:
number of observations: [4, 4]
F statistic: 6.56001
degrees of freedom: (1, 6)

Here, the p-value (𝑝 ≤ 0.05) demonstrates that the groups come from dif-
ferent populations (the means of those populations differ). As a reminder,
in this case my made up L-Statistic (LStatisticEx2) was 1.28 whereas the F-
Statistic is 6.56, so this time it is more distant. The differences stem from dif-
ferent methodology. For instance, just like in Section 4.6 here (LStatisticEx2)
we used abs function as our power horse. But do you remember, that statisti-
cians love to get rid of the sign from a number by squaring it. Anyway, let’s
rewrite our functions in a more statistical manner.� �
compare with our getAbsDiffs
function getSquaredDiffs(v::Vector{<:Real})::Vector{<:Real}

return (Stats.mean(v) .− v) .^ 2
end

compare with our getAbsPointDiffsFromOverallMean
function getResidualSquaredDiffs(

v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
return vcat(getSquaredDiffs(v1), getSquaredDiffs(v2))

end

compare with our getAbsGroupDiffsAroundOverallMean
function getGroupSquaredDiffs(

v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
overallMean::Float64 = Stats.mean(vcat(v1, v2))
groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
groupSqDiffs::Vector{<:Real} = (overallMean .− groupMeans) .^ 2
groupSqDiffs = repVectElts(groupSqDiffs, map(length, [v1, v2]))
return groupSqDiffs

end� �
Note: In reality functions in statistical packages probably use a different formula
for getGroupSquaredDiffs (they do not replicate groupSqDiffs). Still, I like my ex-
planation better, so I will leave it as it is.

The functions are very similar to the ones we developed earlier. Of course,
instead of abs.(we used .^2 to get rid of the sign. Here, I adopted the names
(group sum of squares and residual sum of squares) that you may find in a statis-
tical textbook/software.

COMPARISONS - CONTINUOUS DATA 133

36 https://en.wikipedia
.org/wiki/F-distributio
n

Nowwe can finally calculate averages of those squares and the F-statistics itself
with the following functions� �
function getResidualMeanSquare(

v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
residualSquaredDiffs::Vector{<:Real} = getResidualSquaredDiffs(v1, v2)
return sum(residualSquaredDiffs) / getDf(v1, v2)

end

function getGroupMeanSquare(
v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
groupSquaredDiffs::Vector{<:Real} = getGroupSquaredDiffs(v1, v2)
groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
return sum(groupSquaredDiffs) / getDf(groupMeans)

end

function getFStatistic(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
return getGroupMeanSquare(v1, v2) / getResidualMeanSquare(v1, v2)

end� �
Again, here I tried to adopt the names (group mean square and residual mean
↪→square) that you may find in a statistical textbook/software. Anyway, no-
tice that in order to calculate MeanSquares we divided our sum of squares by the
degrees of freedom (we met this concept and developed the functions for its
calculation in Section 5.2 and in Section 5.3.2). Using degrees of freedom (in-
stead of length(vector) like in the arithmetic mean) is usually said to provide
better estimates of the desired values when the sample size(s) is/are small.

OK, time to verify our functions for the F-statistic calculation.� �
(

getFStatistic(ex1BwtsWater, ex1BwtsPlacebo),
getFStatistic(ex2BwtsWater, ex2BwtsDrugY),

)� �
(0.3536010850042917, 6.560010563323356)

To me, they look similar to the ones produced by Ht.OneWayANOVATest before,
but go ahead scroll up and check it yourself. Anyway, under 𝐻0 (all groups
come from the same population) the F-statistic (so 𝑔𝑟𝑜𝑢𝑝𝑀𝑒𝑎𝑛𝑆𝑞

𝑟𝑒𝑠𝑖𝑑𝑀𝑒𝑎𝑛𝑆𝑞) got the F-
Distribution36 (a probability distribution), hence we can calculate the prob-
ability of obtaining such a value (or greater) by chance and get our p-value
(similarly as we did in Section 4.6.2 or in Section 5.2). Based on that we can
deduce whether samples come from the same population (p > 0.05) or from
different populations (𝑝 ≤ 0.05). Ergo, we get to know if any group (means)
differ(s) from the other(s).

https://en.wikipedia.org/wiki/F-distribution
https://en.wikipedia.org/wiki/F-distribution
https://en.wikipedia.org/wiki/F-distribution

134 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

5.5 Post-hoc tests

Let’s start with a similar example to the ones we already met.

Imagine that you are a scientist and in the Amazon rain forest you discovered
two new species of mice (spB, and spC). Now, you want to compare their body
masses with an ordinary lab mice (spA) so you collect the data. If the body
masses differ perhaps in the future they will become the criteria for species
recognition.� �
if you are in 'code_snippets' folder, then use: "./ch05/miceBwtABC.csv"
if you are in 'ch05' folder, then use: "./miceBwtABC.csv"
miceBwtABC = Csv.read("./code_snippets/ch05/miceBwtABC.csv", Dfs.DataFrame)� �

Table 5.3: Body mass
[g] of three mice
species (fictitious data).

spA spB spC

18 21 23
21 25 27
20 26 25
23 24 28
22 21 27
19 24 26

Now, let us quickly look at the means and standard deviations in the three
groups to get some impression about the data.� �
[
(n, Stats.mean(miceBwtABC[!, n]), Stats.std(miceBwtABC[!, n]))

for n in Dfs.names(miceBwtABC) # n stands for name
]� �
("spA", 20.5, 1.8708286933869707)

("spB", 23.5, 2.073644135332772)

("spC", 26.0, 1.7888543819998317)

Here, the function Dfs.names returns Vector{T} with names of the columns. In
connectionwith comprehensionswemet in Section 3.6.3 it allows us to quickly
obtain the desired statistics without typing the names by hand. Alternatively
we would have to type� �
[
("spA", Stats.mean(miceBwtABC[!, "spA"]), Stats.std(miceBwtABC[!, "spA"])),
("spB", Stats.mean(miceBwtABC[!, "spB"]), Stats.std(miceBwtABC[!, "spB"])),

COMPARISONS - CONTINUOUS DATA 135

37 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.all-Tuple
%7BAny%7D

("spC", Stats.mean(miceBwtABC[!, "spC"]), Stats.std(miceBwtABC[!, "spC"])),
]� �
It didn’t save us a lot of typing in this case, but think what if we had 10, 30 or
even 100 columns. The gain would be quite substantial.

Alternatively, if you read the documentation of the before mentioned (Sec-
tion 5.3) Dfs.describe then you can go with:� �
Dfs.describe(miceBwtABC, :mean, :std)� �

Table 5.4: Selected
summary statistics
based on miceBwtABC
data frame.

variable mean std

spA 20.5 1.8708286933869707
spB 23.5 2.073644135332772
spC 26.0 1.7888543819998317

Anyway, based on the means it appears that the three species differ slightly in
their body masses. Still, in connection with the standard deviations, we can
see that the body masses in the groups overlap slightly. So, is it enough to
claim that they are statistically different at the cutoff level of 0.05 (𝛼)? Let’s
test that with the one-way ANOVA that we met in the previous chapter.

Let’s start by checking the assumptions. First, the normality assumption� �
[getSWtestPval(miceBwtABC[!, n]) for n in Dfs.names(miceBwtABC)] |>
pvals −> map(pv −> pv > 0.05, pvals) |>

all� �
true

All normal. Herewe get the p-values from Shapiro-Wilk test for all our groups.
Briefly, we obtain p-value (getSWtestPval) for each group (Dfs.names(miceBwtABC
↪→)). Then we pipe (compare with |> in getSortedKeysVals from Section 4.5)
the result to map to check if the p-values (pvals) are greater than 0.05 (then we
do not reject the null hypothesis of normal distribution). Finally, we pipe (|>)
the Vector{Bool} to the function all37. The function returns true only if all the
elements of the vector are true.

OK, time for the homogeneity of variance assumption� �
Ht.FlignerKilleenTest(

[miceBwtABC[!, n] for n in Dfs.names(miceBwtABC)]...
) |> Ht.pvalue |> pv −> pv > 0.05� �

https://docs.julialang.org/en/v1/base/collections/#Base.all-Tuple%7BAny%7D
https://docs.julialang.org/en/v1/base/collections/#Base.all-Tuple%7BAny%7D
https://docs.julialang.org/en/v1/base/collections/#Base.all-Tuple%7BAny%7D
https://docs.julialang.org/en/v1/base/collections/#Base.all-Tuple%7BAny%7D

136 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

38 https://juliastats.org
/HypothesisTests.jl/st
able/

true

The variances are roughly equal. Here [miceBwtABC[!, n] for n in Dfs.names(miceBwtABC
↪→)] returns Vector{Vector{<:Real}} so vector of vectors, e.g. [[1, 2], [3, 4],
↪→[5, 6]] but Ht.FlingerTest expects separate vectors [1, 2], [3, 4], [5, 6] (no
outer square brackets). The splat operator (...) placed after the array removes
the outer square brackets. Then we pipe the result of the test Ht.FlingerTest to
Ht.pvalue because according to the documentation38 it extracts the p-value from
the result of the test. Finally, we pipe (|>) the result to an anonymous function
(pv −> pv > 0.05) to check if the p-value is greater than 0.05 (then we do not
reject the null hypothesis of variance homogeneity).

OK, and now for the one-way ANOVA.� �
Ht.OneWayANOVATest(

[miceBwtABC[!, n] for n in Dfs.names(miceBwtABC)]...
) |> Ht.pvalue� �

0.0006608056579183923

Hmm,OK, the p-value is lower than the cutoff level of 0.05. What now. Well, by
doing one-wayANOVAyou ask your computer a very specific question: “Does
at least one of the groupmeans differs from the other(s)?”. The computer does
exactly what you tell it, nothing more, nothing less. Here, it answers your
question precisely with: “Yes” (since 𝑝 ≤ 0.05). I assume that right now you
are not satisfied with the answer. After all, what good is it if you still don’t
know which group(s) differ one from another: spA vs. spB and/or spA vs spC
and/or spB vs spC. If you want your computer to tell you that then you must
ask it directly to do so. That is what post-hoc tests are for (post hoc means
after the event, here the event is one-way ANOVA).

The split to one-way ANOVA and post-hoc tests made perfect sense in the
1920s-30s and the decades after the method was introduced. Back then you
performed calculations with a pen and a piece of paper (and since ~1970s a
pocket calculator as well). Once one-way ANOVA produced a p-value greater
than 0.05 you stopped (and saved time and energy on an unnecessary addi-
tional calculations). Otherwise, and only then, you performed a post-hoc test
(againwith a pen and a piece of paper). Anyway, asmentioned in Section 4.9.4
the popular choices for post-hoc tests include Fisher’s LSD test and Tukey’s
HSD test. Here we are going to use a more universal approach and apply a
so called pairwise t−test (which is just a t-test, that you already know, done
between every pairs of groups). Ready, here we go� �
evtt = Ht.EqualVarianceTTest
getPval = Ht.pvalue

https://juliastats.org/HypothesisTests.jl/stable/
https://juliastats.org/HypothesisTests.jl/stable/
https://juliastats.org/HypothesisTests.jl/stable/

COMPARISONS - CONTINUOUS DATA 137

for "spA vs spB", "spA vs spC" and "spB vs spC", respectively
postHocPvals = [
evtt(miceBwtABC[!, "spA"], miceBwtABC[!, "spB"]) |> getPval,
evtt(miceBwtABC[!, "spA"], miceBwtABC[!, "spC"]) |> getPval,
evtt(miceBwtABC[!, "spB"], miceBwtABC[!, "spC"]) |> getPval,
]

postHocPvals� �
[0.025111501405268754, 0.0003985445257645916, 0.049332195639921715]

OK, here to save us some typing we assigned the long function names (Ht.
↪→EqualVarianceTTest and Ht.pvalue) to the shorter ones (evtt and getPval). Then
we used them to conduct the t-tests and extract the p-values for all the possi-
ble pairs to compare (we will develop some more user friendly functions in
the upcoming exercises, see Section 5.7.4). Anyway, it appears that here any
mouse species differs with respect to their average body weight from the other
two species (all p-vaues are below 0.05). Or does it?

5.6 Multiplicity correction

In the previous section we performed a pairwise t-test for the following com-
parisons:

• spA vs spB,
• spA vs spC,
• spB vs spC.

The obtained p-values were� �
postHocPvals� �
[0.025111501405268754, 0.0003985445257645916, 0.049332195639921715]

Based on that we concluded that every group mean differs from every other
group mean (all p-values are lower than the cutoff level for 𝛼 equal to 0.05).
However, there is a small problem with this approach (see the explanation
below).

In Section 4.7.5 we said that it is impossible to reduce the type 1 error (𝛼)
probability to 0. Therefore if all our null hypothesis (𝐻0) were true we need

138 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

39 https://en.wikipedia
.org/wiki/Neoplasm

40 https://en.wikipedia
.org/wiki/Box_plot

41 https://en.wikipedia
.org/wiki/Murphy%27s
_law

to accept the fact that we will report some false positive findings. All we can
do is to keep that number low.

Imagine you are testing a set of random substances to see if they reduce the
size (e.g. diameter) of a tumor39. Most likely the vast majority of the tested
substances will not work (so let’s assume that in reality all 𝐻0s are true). Now
imagine, that the result each substance has on the tumor is placed in a separate
graph. So, you draw a boxplot40 (like the one youwill do in the upcoming Sec-
tion 5.7.5). Now the question. How many graphs would contain false positive
results if the cutoff level for 𝛼 is 0.05? Pause for a moment and come up with
the number. That is easy, 100 graphs times 0.05 (probability of false positive)
gives us the expected 100 ∗ 0.05 = 5 figures with false positives. BTW. If you
got it, congratulations. If not compare the solutionwith the calculationswedid
in Section 4.5. Anyway, you decided that this will be your golden standard,
i.e. no more than 5% (5

100 = 0.05) of figures with false positives.

But here (in postHocPvals above) you got 3 comparisons and therefore 3 p-
values. Imagine that you place such three results into a single figure. Now,
the question is: under the conditions given above (all 𝐻0s true, cutoff for 𝛼 =
0.05) how many graphs would contain false positives if you placed three such
comparisons per graph for 100 figures? Think for amoment and come upwith
the number.

OK, so we got 100 graphs, each reporting 3 comparisons (3 p-values), which
gives us in total 300 results. Out of them we expect 300 ∗ 0.05 = 15 to be false
positives. Now, we pack those 300 results into 100 figures. In the best case
scenario the 15 false positives will land in the first five graphs (three false pos-
itives per graph, 5∗3 = 15), the remaining 285 true negatives will land in the
remaining 95 figures (three true negatives per graph, 95∗3 = 285). The golden
standard seems to be kept (5/100 = 0.05). The problem is that we don’t know
which figures get the false positives. The Murphy’s law41 states: “Anything
that can go wrong will go wrong, and at the worst possible time.” (or in the
worst possible way). If so, then the 15 false positives will go to 15 different
figures (1 false positive + 2 true negatives per graph), and the remaining 285 −
↪→ 2∗15 = 255 true negatives will go to the remaining 255/3 = 85 figures. Here,
your golden standard (5% of figures with false positives) is violated (15/100 =
0.15).

This is why we cannot just leave the three postHocPvals as they are. We need
to act, but what can we do to counteract the problem. Well, if the initial cutoff
level for 𝛼 was 3 times smaller (0.05/3=0.017) then in the case abovewewould
have 300 ∗ (0.05/3) ≈ 5.0 false positives to put into 100 figures and everything
would be OK even in the worst case scenario. Alternatively, since division is
inverse operation to multiplication we could just multiply every p-value by 3
(number of comparisons) and check its significance at the cutoff level for 𝛼 =

https://en.wikipedia.org/wiki/Neoplasm
https://en.wikipedia.org/wiki/Neoplasm
https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Murphy%27s_law
https://en.wikipedia.org/wiki/Murphy%27s_law
https://en.wikipedia.org/wiki/Murphy%27s_law

COMPARISONS - CONTINUOUS DATA 139

42 https://en.wikipedia
.org/wiki/Bonferroni_c
orrection

43 https://en.wikipedia
.org/wiki/False_discov
ery_rate#Benjamini%E
2%80%93Hochberg_pr
ocedure
44 https://github.com/j
uliangehring/MultipleT
esting.jl

0.05, like so� �
function adjustPvalue(pVal::Float64, by::Int)::Float64

@assert (0 <= pVal <= 1) "pVal must be in range [0−1]"
return min(1, pVal∗by)

end

function adjustPvalues(pVals::Vector{Float64})::Vector{Float64}
return adjustPvalue.(pVals, length(pVals))

end

p−values for comparisons: spA vs spB, spA vs spC, and spB vs spC
adjustPvalues(postHocPvals)� �
[0.07533450421580626, 0.0011956335772937748, 0.14799658691976514]

Notice, the since on entry a p-value may be, let’s say, 0.6 then multiplying it
by 3 would give us 1.8 which is an impossible value for probability (see Sec-
tion 4.3.1). That is why we set the upper limit to 1 by using min(1, pVal∗by)
↪→. Anyway, after adjusting for multiple comparisons only one species differs
from the other (spA vs spC, adjusted 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05). And this is our final
conclusion.

Themethodwe used above (in adjustPvalue and adjustPvalues) is called the Bon-
ferroni correction42. Probably it is the simplest method out there and it is use-
ful if we have a small number of independent comparisons/p-values (let’s say
up to 6). For a large number of comparisons you are likely to end up with a
paradox:

• one-wayANOVA (which controls the overall 𝛼 at the level of 0.05) indicates
that there are some statistically significant differences,

• the corrected p-values (which rely on different assumptions) show no sig-
nificant differences.

Therefore, for large number of comparisons you may choose a different (less
strict) method, e.g. the Benjamini-Hochberg procedure43. Both of those (Bon-
ferroni and Benjamini-Hochberg) are available in the MultipleTesting44 pack-
age. Observe� �
import MultipleTesting as Mt
p−values for comparisons: spA vs spB, spA vs spC, and spB vs spC
resultsOfThreeAdjMethods = (

adjustPvalues(postHocPvals),
Mt.adjust(postHocPvals, Mt.Bonferroni()),
Mt.adjust(postHocPvals, Mt.BenjaminiHochberg())

https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure
https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure
https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure
https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure
https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure
https://github.com/juliangehring/MultipleTesting.jl
https://github.com/juliangehring/MultipleTesting.jl
https://github.com/juliangehring/MultipleTesting.jl

140 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

45 https://docs.makie.o
rg/stable/documentatio
n/backends/cairomaki
e/

)

resultsOfThreeAdjMethods� �
([0.07533450421580626, 0.0011956335772937748, 0.14799658691976514],
[0.07533450421580626, 0.0011956335772937748, 0.14799658691976514],
[0.03766725210790313, 0.0011956335772937748, 0.049332195639921715])

As expected, the first two lines give the same results (since they both use the
same adjustment method). The third line, and a different method, produces a
different result (and hence yields distinctive interpretation).

A word of caution, you shouldn’t just apply 10 different adjustment methods
on the obtained p-values and choose the one that produces the greatest num-
ber of significant differences. Instead you should choose a correction method
a priori (up front, in advance) and stick to it later (make the final decision
of which group(s) differ based on the adjusted p-values). Therefore, it takes
some consideration to choose the multiplicity correction well.

OK, enough of theory, time for some practice. Whenever you’re ready click the
right arrow to go to the exercises for this chapter.

5.7 Exercises - Comparisons of Continuous Data

Just like in the previous chapters here you will find some exercises that you
may want to solve to get from this chapter as much as you can (best option).
Alternatively, youmay read the task descriptions and the solutions (and try to
understand them).

5.7.1 Exercise 1

In Section 5.2 we said that when we draw a small random sample from a nor-
mal distribution of a given mean (𝜇) and standard deviation (𝜎) then the dis-
tribution of the sample means will be pseudo-normal with the mean roughly
equal to the populationmean and the standard deviation roughly equal to sem
(standard error of the mean).

Time to confirm that. Moreover, it’s time to practice our plotting skills (I think
we neglected them so far).

In this task your population of interest is Dsts.Normal(80, 20). To make it more
concrete let’s say this is the distribution of body weight for adult humans. To
plot you may use CairoMakie45 or some other plotting library (read the tuto-
rial(s)/docs first).

https://docs.makie.org/stable/documentation/backends/cairomakie/
https://docs.makie.org/stable/documentation/backends/cairomakie/
https://docs.makie.org/stable/documentation/backends/cairomakie/
https://docs.makie.org/stable/documentation/backends/cairomakie/

COMPARISONS - CONTINUOUS DATA 141

46 https://docs.makie.o
rg/stable/examples/plo
tting_functions/hist/i
ndex.html#hist

47 https://docs.makie.o
rg/stable/examples/plo
tting_functions/hvline
s/index.html#vlines
48 https://docs.makie.o
rg/stable/examples/plo
tting_functions/text/i
ndex.html#text
49 https://docs.makie.o
rg/stable/examples/plo
tting_functions/bracke
t/
50 https://docs.makie.o
rg/stable/examples/plo
tting_functions/text/i
ndex.html#text

1) draw a random sample of size 10 from the population Dsts.Normal(80, 20).
Calculate sem and sd for the sample,

2) draw 100’000 random samples of size 10 from the population Dsts.Normal
↪→(80, 200) and calculate the samples means (100’000 sample means)

3) draw the histogramof the samplemeans frompoint 2 using, e.g. Cmk.hist46.
Afterwards, you may set the y-axis limits from 0 to 4000, with Cmk.ylims!(0,
↪→ 4000).

4) on the histogram mark the population mean (𝜇 = 80) with a vertical line
using, e.g. Cmk.vlines47

5) annotate the line from point 4 (e.g. type “population mean = 80”) using,
e.g. Cmk.text48

6) on the histogrammark themeans standarddeviationusing, e.g. Cmk.bracket49,
7) annotate the histogram (above the bracket from point 6) with the means

standard deviation, using, e.g. Cmk.text50,
8) annotate the histogram with the sample’s sem and sd (from point 1) and

compare them with the means standard deviation from point 7.

And that’s it. This may look like a lot of work to do, but don’t freak out, do
it one point at a time, look at the instructions (they are pretty precise on pur-
pose).

Remember that each of those functions may have an equivalent that ends with ! (a
function that modifies an already existing figure). It is for you to decide when to use
which version of a plotting function.

5.7.2 Exercise 2

Doyou remember how in Section 5.4we calculated the L-statistic for ex2BwtsWater
↪→ and ex2BwtsDrugY and found out its value was equal to LStatisticEx2 = 1.28?
Thenwe calculated the famous F-statistic for the same two groups (ex2BwtsWater
and ex2BwtsDrugY) and it was equal to getFStatistic(ex2BwtsWater, ex2BwtsDrugY)=
6.56. The probability of obtaining an F-value greater than this (by chance) if
𝐻0 is true (i.e. both groups come from the same distribution (Dsts.Normal(25,
↪→3)) is equal to:� �
the way we calculated it in the chapter (more or less)
Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY) |> Ht.pvalue� �
0.04283642629899474

Alternatively, we cold calculate it also with our friendly Distributions package
(similarly to how we used it in, e.g. Section 4.6.2)� �
the way we can calculate it with Distributions package

https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#hist
https://docs.makie.org/stable/examples/plotting_functions/hvlines/index.html#vlines
https://docs.makie.org/stable/examples/plotting_functions/hvlines/index.html#vlines
https://docs.makie.org/stable/examples/plotting_functions/hvlines/index.html#vlines
https://docs.makie.org/stable/examples/plotting_functions/hvlines/index.html#vlines
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/bracket/
https://docs.makie.org/stable/examples/plotting_functions/bracket/
https://docs.makie.org/stable/examples/plotting_functions/bracket/
https://docs.makie.org/stable/examples/plotting_functions/bracket/
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text

142 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

51 https://docs.makie.o
rg/stable/examples/plo
tting_functions/lines/in
dex.html#lines

52 https://docs.makie.o
rg/stable/examples/plo
tting_functions/scatter/
index.html#scatter

53 https://docs.makie.o
rg/stable/examples/blo
cks/legend/index.htm
l#multi-group_legends

1 − Dfs for groups (number of groups − 1),
6 − Dfs for residuals (number of observations − number of groups)
1 − Dsts.cdf(Dsts.FDist(1, 6), getFStatistic(ex2BwtsWater, ex2BwtsDrugY))� �
0.042836426298994756

Hopefully, you remember that. OK, here is the task.

1) write a function getLStatistic(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
↪→ that calculates the L-Statistic for two given vectors

2) estimate the L-Distribution. To do that:

2.1) run, let’s say 1’000’000 simulations under 𝐻0 that v1 and v2 come from
the same population (Dsts.Normal(25, 3), draw 4 observations per vector).
Calculate the L-Statistic each time (round it to 1 decimal place with round(
↪→getLStatistic(v1, v2), digits=1)

2.2) use getCounts (Section 4.4), getProbs (Section 4.4) and getSortedKeysVals
↪→ (Section 4.5) to obtain the probabilities for each value of the L-Statistic
produced in point 2.1

2.3) based on the data from point 2.2 calculate the probability of L-Statistic
being greater than LStatisticEx2 = 1.28. Compare the probability with the
probability obtained for the F-Statistic (presented in the code snippets above)

3) using, e.g. Cmk.lines51 (color="blue") and the data from point 2.2 plot the
probability distribution for the L-Distribution

4) add vertical line, e.g with Cmk.vlines at L-Statistic = 1.28, annotate the line
with Cmk.text

5) check what happens if both the samples from point 2.1 come from a differ-
ent population (e.g. Dsts.Normal(100, 50)). Plot the new distribution on the
old one (point 3) with, e.g. Cmk.scatter52 (marker=:circle, color="blue").

6) check what happens if the samples from point 2.1 come from the same
distribution (Dsts.Normal(25, 3)) but are of different size (8 observations per
vector). Plot the new distribution on the old one (point 3) with, e.g. Cmk.
↪→scatter (marker=:xcross, color="blue").

Optionally, if you want to make your plots more readable and if you like challenges you
may:

7) add the F-Distribution to the plot, e.g. with Cmk.lines (color="red")
8) add legends53 to the plots

https://docs.makie.org/stable/examples/plotting_functions/lines/index.html#lines
https://docs.makie.org/stable/examples/plotting_functions/lines/index.html#lines
https://docs.makie.org/stable/examples/plotting_functions/lines/index.html#lines
https://docs.makie.org/stable/examples/plotting_functions/lines/index.html#lines
https://docs.makie.org/stable/examples/plotting_functions/scatter/index.html#scatter
https://docs.makie.org/stable/examples/plotting_functions/scatter/index.html#scatter
https://docs.makie.org/stable/examples/plotting_functions/scatter/index.html#scatter
https://docs.makie.org/stable/examples/plotting_functions/scatter/index.html#scatter
https://docs.makie.org/stable/examples/blocks/legend/index.html#multi-group_legends
https://docs.makie.org/stable/examples/blocks/legend/index.html#multi-group_legends
https://docs.makie.org/stable/examples/blocks/legend/index.html#multi-group_legends
https://docs.makie.org/stable/examples/blocks/legend/index.html#multi-group_legends

COMPARISONS - CONTINUOUS DATA 143

Again. This may look like a lot of work to do, but don’t freak out, do it one
point at a time, look at the instructions (they are pretty precise on purpose).
If you get stuck, take a sneak peak at the solution and continue on your own
once you get back on the track.

5.7.3 Exercise 3

Let’s cool down after the last two demanding exercises.

In this task I want you to write the function getPValUnpairedTest(v1::Vector{<:
↪→Real}, v2::Vector{<:Real})::Float64. The function accepts two vectors, runs
an unpaired test and returns the p-value.

The function should check the:

1) normality (Ht.ShapiroWilkTest), and
2) homogeneity of variance (Ht.FlingerTest)

assumptions.

If both the assumptions hold then run Ht.EqualVarianceTTest.

If only normality assumption holds then run Ht.UnequalVarianceTTest.

Otherwise run Ht.MannWhitneyUTest.

5.7.4 Exercise 4

Write a function with the following signature:� �
function getPValsUnpairedTests(

df::Dfs.DataFrame
)::Dict{Tuple{String,String},Float64}� �

The function accepts a data frame (like miceBwtABC wemet in Section 5.5). Then
it runs the appropriate comparisons (use getPValUnpairedTest that you devel-
oped in Section 5.7.3) and returns the p-values for comparisons in the form
of a dictionary where the keys are the names of the compared groups (Tuple{
↪→String, String}), and the values are pvalues (e.g. Dict(("grX", "grY") => 0.3,
↪→ ("grX", "grZ") => 0.022). The function should compare every group with
every other group.

Once you are done with this task tweak your function slightly to have the fol-
lowing signature:

144 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

54 https://en.wikipedia
.org/wiki/Box_plot

� �
function getPValsUnpairedTests(

df::Dfs.DataFrame,
multCorr
)::Dict{Tuple{String,String},Float64}� �

This function adjusts the obtained p-values using some sort of multiplicity
correction (multCorr) from MultipleTesting package we discussed before (Sec-
tion 5.6). I didn’t write the type signature for multCorr here because it might
be frightening at first sight. Still, even without it the function should work just
fine.

Test your function on miceBwtABC and compare the results with those we ob-
tained in Section 5.5 and in Section 5.6.

5.7.5 Exercise 5

It appears that when a scientific paper presents a comparison between few
groups of continuous variables it does so in a form of bar-plot or box-plot54
with some markers for statistically significant differences over the bars/boxes.

So here is your task. For data from miceBwtABC from Section 5.5 write a function
that draws a plot similar to the one below (it doesn’t have to be the exact copy).

Figure 5.6: Boxplot of
body mass of three
mice species (fictitious
data). a - difference
vs. spA (p < 0.05), b -
difference vs. spB (p <
0.05).

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Box_plot

COMPARISONS - CONTINUOUS DATA 145

55 https://en.wikipedia
.org/wiki/Median
56 https://en.wikipedia
.org/wiki/Interquartil
e_range

57 https://docs.makie.o
rg/stable/examples/plo
tting_functions/boxplo
t/index.html#boxplot
58 https://docs.makie.o
rg/stable/examples/blo
cks/axis/index.html#xt
icks
59 https://docs.makie.o
rg/stable/examples/plo
tting_functions/text/i
ndex.html#text

In the graph a middle horizontal line in a box is the median55, a box depicts
interquartile range56 (IQR), the whiskers length is equal to 1.5 * IQR (or the
maximum and minimum if they are smaller than 1.5 * IQR).

For the task you may use:

• Cmk.boxplot57 - to draw the boxplot
• Cmk.xticks58 - to add group labels in x-ticks
• p-values provided by getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg)

from the last exercise to generate statistical significance markers.
• Cmk.text59 to place the markers in the correct positions on the plot.

The function should also work for different data frames of similar kind with
different number of groups in the columns.

5.8 Solutions - Comparisons of Continuous Data

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

5.8.1 Solution to Exercise 1

First the sample and the 100’000 simulations:� �
Rand.seed!(321)
ex1sample = Rand.rand(Dsts.Normal(80, 20), 10)
ex1sampleSd = Stats.std(ex1sample)
ex1sampleSem = getSem(ex1sample)
ex1sampleMeans = [

Stats.mean(Rand.rand(Dsts.Normal(80, 20), 10))
for _ in 1:100_000]

ex1sampleMeansMean = Stats.mean(ex1sampleMeans)
ex1sampleMeansSd = Stats.std(ex1sampleMeans)� �
The code doesn’t contain any new elements, so I will leave it to you to figure
out what happened there.

And now, let’s move to the plot.� �
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="Histogram of 100'000 sample means",
xlabel="Adult human body weight [kg]",
ylabel="Count")

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/blocks/axis/index.html#xticks
https://docs.makie.org/stable/examples/blocks/axis/index.html#xticks
https://docs.makie.org/stable/examples/blocks/axis/index.html#xticks
https://docs.makie.org/stable/examples/blocks/axis/index.html#xticks
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text
https://docs.makie.org/stable/examples/plotting_functions/text/index.html#text

146 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

60 https://docs.makie.o
rg/v0.21/tutorials/getti
ng-started

Cmk.hist!(ax1, ex1sampleMeans, bins=100,
color=Cmk.RGBAf(0, 0, 1, 0.3))

Cmk.ylims!(ax1, 0, 4000)
Cmk.vlines!(ax1, 80, ymin=0.0, ymax=0.85, color="black", linestyle=:dashdot)
Cmk.text!(ax1, 81, 1000, text="population mean = 80")
Cmk.bracket!(ax1,

ex1sampleMeansMean − ex1sampleMeansSd / 2, 3500,
ex1sampleMeansMean + ex1sampleMeansSd / 2, 3500,
style=:square)

Cmk.text!(ax1, 72.5, 3700,
text="sample means sd = 6.33")

Cmk.text!(ax1, 90, 3200,
text="single sample sd = 17.32")

Cmk.text!(ax1, 90, 3000,
text="single sample sem = 5.48")

fig� �
This produces the following graph.

Figure 5.7: Histogram
of drawing 100’000
random samples from a
population with 𝜇 = 80
and 𝜎 = 20.

The graph clearly demonstrates that a better approximation of the samples
means sd is a single sample sem and not a single sample sd (as stated in Sec-
tion 5.2).

I’m not gonna explain the code snippet above in great detail since this is a
warm up exercise, and the tutorials60 (e.g. the basic tutorial) and the docu-

https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started
https://docs.makie.org/v0.21/tutorials/getting-started

COMPARISONS - CONTINUOUS DATA 147

61 https://docs.julialang
.org/en/v1/manual/stri
ngs/#string-interpolati
on
62 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Keyword-Arg
uments
63 https://docs.julialang
.org/en/v1/manual/me
taprogramming/#Sym
bols

mentation for the plotting functions (see the links in Section 5.7.1) are pretty
good. Moreover, we already used CairoMakie plotting functions in Section 4.5.
Still, a few quick notes are in order.

First of all, drawing a graph like that is not an enormous feat, you just need
some knowledge (you read the tutorial and the function docs, right?). The
rest is just patience and replication of the examples. Ah yes, I forgot about the
try and error process [that happens from time to time (OK, more often than I
would like to admit) in my case]. If an error happens, do not panic try to read
the error’s message and think what it tells you).

It is always a good idea to annotate the graph, add the title, x- and y-axis labels
(tomake the reader’s, and your own, reasoning easier). Figures are developed
from top to bottom (in the code), layer after layer (top line of code -> bottom
layer on a graph, next line of code places a layer above the previous layer). First
function (fig, Cmk.Axis, and Cmk.hist!) creates the figure, the following functions
(e.g. Cmk.text! and Cmk.vlines!), write/paint something on the previous layers.
After some time and tweaking you should be able to produce quite pleasing
figures (just remember, patience is the key). One more point, instead of typ-
ing strings by hand (like text="sample sd = 17.32") you may let Julia do that by
using strings interpolation61, like text="sample sd = $(round(ex1sampleSd, digits
↪→=2))"(with time you will appreciate the convenience of this method).

Onemore thing, the :dashdot (after the keyword argument62 linetype) is a Sym-
bol63. For now you may treat it like a string but written differently, i.e. :dashdot
instead of "dashdot".

5.8.2 Solution to Exercise 2

First let’s start with the functions we developed in Section 4 (and its subsec-
tions). We already now them, so I will not explain them here.� �
function getCounts(v::Vector{T})::Dict{T,Int} where {T}

counts::Dict{T,Int} = Dict()
for elt in v

counts[elt] = get(counts, elt, 0) + 1
end
return counts

end

function getProbs(counts::Dict{T,Int})::Dict{T,Float64} where {T}
total::Int = sum(values(counts))
return Dict(k => v / total for (k, v) in counts)

end

function getSortedKeysVals(d::Dict{A,B})::Tuple{
Vector{A},Vector{B}} where {A,B}

https://docs.julialang.org/en/v1/manual/strings/#string-interpolation
https://docs.julialang.org/en/v1/manual/strings/#string-interpolation
https://docs.julialang.org/en/v1/manual/strings/#string-interpolation
https://docs.julialang.org/en/v1/manual/strings/#string-interpolation
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols
https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols
https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols
https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols

148 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

sortedKeys::Vector{A} = keys(d) |> collect |> sort
sortedVals::Vector{B} = [d[k] for k in sortedKeys]
return (sortedKeys, sortedVals)

end� �
Now, time to define getLstatistic based onwhatwe learned in Section 5.4 (note,
the functionuses getAbsGroupDiffsAroundOverallMean and getAbsPointDiffsFromGroupMeans
↪→ that we developed in that section).� �
function getLStatistic(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64

absDiffsOverallMean::Vector{<:Real} =
getAbsGroupDiffsFromOverallMean(v1, v2)

absDiffsGroupMean::Vector{<:Real} =
getAbsPointDiffsFromGroupMeans(v1, v2)

return Stats.mean(absDiffsOverallMean) / Stats.mean(absDiffsGroupMean)
end� �
OK, that was easy, after all we practically did it all before, we only needed
to look for the components in the previous chapters. Now, the function to
determine the distribution.� �
function getLStatisticsUnderH0(

popMean::Real, popSd::Real,
nPerGroup::Int=4, nIter::Int=1_000_000)::Vector{Float64}

v1::Vector{Float64} = []
v2::Vector{Float64} = []
result::Vector{Float64} = zeros(nIter)

for i in 1:nIter
v1 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
v2 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
result[i] = getLStatistic(v1, v2)

end

return result
end� �
This one is slightly more complicated, so I think a bit of explanation is in order
here. First we initialize some variables that we will use later. For instance, v1
and v2 will hold random samples drawn from a population of interest (Dsts.
↪→Normal(popMean, popSd)) andwill changewith each iteration. The vector result
is initialized with 0s and will hold the LStatistic calculated during each itera-
tion for v1 and v2. The result vector is returned by the function. Later onwewill
be able to use it to getCounts and getProbs for the L-Statistics. This should work
just fine. However, if we slightly modify our function (getLStatisticsUnderH0),

COMPARISONS - CONTINUOUS DATA 149

we could use it not only with the L-Statistic but also F-Statistic (optional points
in this task) or any other statistic of interest. Observe� �
getXStatFn signature: fnName(::Vector{<:Real}, ::Vector{<:Real})::Float64
function getXStatisticsUnderH0(

getXStatFn::Function,
popMean::Real, popSd::Real,
nPerGroup::Int=4, nIter::Int=1_000_000)::Vector{Float64}

v1::Vector{Float64} = []
v2::Vector{Float64} = []
result::Vector{Float64} = zeros(nIter)

for i in 1:nIter
v1 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
v2 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
result[i] = getXStatFn(v1, v2)

end

return result
end� �
Here, instead of getLStatisticsUnderH0wenamed the function getXStatisticsUnderH0
↪→, where X is any statistic we can come up with. The function that calculates
our statistic of interest is passed as a first argument to getXStatisticsUnderH0
(getXStatFn). The getXStatFn should work just fine, if it accepts two vectors (::
↪→Vector{<:Real}) and returns the statistic of interest (as Float64). Both those
assumptions are fulfilled by getLStatistic (defined above) and getFStatistic
↪→ defined in Section 5.4. To use our getXStatisticsUnderH0 we would type, e.g.:
getXStatisticsUnderH0(getFStatistic, 25, 3, 4) or getXStatisticsUnderH0(getLStatistic
↪→, 25, 3, 4) instead of getLStatisticsUnderH0(25, 3, 4) that we defined in our
first try (so more typing, but greater flexibility, and the result would be the
same).

Now, to get a distribution of interest we use the following function� �
getXStatFn signature: fnName(::Vector{<:Real}, ::Vector{<:Real})::Float64
function getXDistUnderH0(getXStatFn::Function,

mean::Real, sd::Real,
nPerGroup::Int=4, nIter::Int=10^6)::Dict{Float64,Float64}

xStats::Vector{<:Float64} = getXStatisticsUnderH0(
getXStatFn, mean, sd, nPerGroup, nIter)

xStats = round.(xStats, digits=1)
xCounts::Dict{Float64,Int} = getCounts(xStats)
xProbs::Dict{Float64,Float64} = getProbs(xCounts)

return xProbs

150 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

64 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.filter

end� �
First, we calculate the statistics of interest (xStats), then we round the statis-
tics to a 1 decimal point (round.(xStats, digits=1)). This is necessary, since in a
moment we will use getCounts so we need some repetitions in our xStats vector
(e.g. 1.283333331 and 1.283333332 will, both get rounded to 1.3 and the count
for this value of the statisticwill be 2). Oncewe got the counts, we change them
to probabilities (fraction of times that the given value of the statistic occurred)
with getProbs.

Now we can finally, use them to estimate the probability that the L-statistic
greater than LStatisticEx2 = 1.28 occurred by chance.� �
Rand.seed!(321)
lprobs = getXDistUnderH0(getLStatistic, 25, 3)
lprobsGTLStatisticEx2 = [v for (k, v) in lprobs if k > LStatisticEx2]
lStatProb = sum(lprobsGTLStatisticEx2)� �
0.045378999999999996

Here, we used a comprehension with if. So, for every key-value pair ((k, v
↪→)) that is in lprobs we choose only those whose key (L-Statistic) is greater
than LStatisticEx2 (if k > LStatisticEx2). In the last step we take only value ([v
↪→) from the pair (the value is the probability of such L-Statistic happening by
chance alone) to our result lprobsGTLStatisticEx2. If this (comprehension with
if) is to complicated for you then youmay consider using filter64 and pipe (|>)
the result to values |> collect.

The estimated probability for our L-Statistic is 0.045which is pretty close to the
probability obtained for the F-Statistic (Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY
↪→) |> Ht.pvalue = 0.043) (and well it should).

In virtually the same way we can get the experimental probability of an F-
statistic being greater than getFStatistic(ex2BwtsWater, ex2BwtsDrugY) = 6.56 by
chance. Observe� �
Rand.seed!(321)
cutoffFStat = getFStatistic(ex2BwtsWater, ex2BwtsDrugY)
fprobs = getXDistUnderH0(getFStatistic, 25, 3)
fprobsGTFStatisticEx2 = [v for (k, v) in fprobs if k > cutoffFStat]
fStatProb = sum(fprobsGTFStatisticEx2)� �
0.043154000000000005

Again, the p-value is quite similar to the onewegot froma formal Ht.OneWayANOVATest
↪→ (as it should be).

https://docs.julialang.org/en/v1/base/collections/#Base.filter
https://docs.julialang.org/en/v1/base/collections/#Base.filter
https://docs.julialang.org/en/v1/base/collections/#Base.filter

COMPARISONS - CONTINUOUS DATA 151

OK, now it’s time to draw some plots. First, let’s get the values for x- and y-axes� �
Rand.seed!(321)
L distributions
lxs1, lys1 = getXDistUnderH0(getLStatistic, 25, 3) |> getSortedKeysVals
lxs2, lys2 = getXDistUnderH0(getLStatistic, 100, 50) |> getSortedKeysVals
lxs3, lys3 = getXDistUnderH0(getLStatistic, 25, 3, 8) |> getSortedKeysVals
F distribution
fxs1, fys1 = getXDistUnderH0(getFStatistic, 25, 3) |> getSortedKeysVals� �
No, big deal L-Distributions start with l, the classical F-Distribution starts with
f. BTW.Notice that thanks to getXDistUnderH0wedidn’t have towrite two almost
identical functions (getLDistUnderH0 and getFDistUnderH0).

OK, let’s place them on the graph� �
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="F−Distribution (red) and L−Distribution (blue)",
xlabel="Value of the statistic",
ylabel="Probability of outcome")

l1 = Cmk.lines!(ax1, fxs1, fys1, color="red")
l2 = Cmk.lines!(ax1, lxs1, lys1, color="blue")
sc1 = Cmk.scatter!(ax1, lxs2, lys2, color="blue", marker=:circle)
sc2 = Cmk.scatter!(ax1, lxs3, lys3, color="blue", marker=:xcross)
Cmk.vlines!(ax1, LStatisticEx2, color="lightblue", linestyle=:dashdot)
Cmk.text!(ax1, 1.35, 0.1,

text="L−Statistic = 1.28")
Cmk.xlims!(ax1, 0, 4)
Cmk.ylims!(ax1, 0, 0.25)
Cmk.axislegend(ax1,

[l1, l2, sc1, sc2],
[

"F−Statistic(1, 6) [Dsts.Normal(25, 3), n = 4]",
"L−Statistic [Dsts.Normal(25, 3), n = 4]",
"L−Statistic [Dsts.Normal(100, 50), n = 4]",
"L−Statistic [Dsts.Normal(25, 3), n = 8]"

],
"Distributions

(num groups = 2,
n − num observations per group)",

position=:rt)
fig� �
Behold

Wow, what a beauty.

A few points of notice. Before, we calculated the probability (lStatProb) of
getting the L-Statistic value greater than the vertical light blue line (the area

152 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 5.8: Exper-
imental F- and L-
Distributions.

under the blue curve to the right of that line). This is a one tail probability
only. Interestingly, for the L-Distribution the mean and sd in the population of
origin are not that important (blue circles for Dsts.Normal(100, 50) lie exactly on
the blue line for Dsts.Normal(25, 3)). However, the number of groups and the
number of observations per group affect the shape of the distribution (blue
xcrosses for Dsts.Normal(25, 3) n = 8 diverge from the blue curve for Dsts.Normal
↪→(25, 3) n = 4).

The same is true for the F-Distribution. That iswhy the F-Distribution depends
only on the degrees of freedom (Dsts.FDist(dfGroup, dfResidual)). The degrees
of freedom depend on the number of groups and the number of observations
per group.

5.8.3 Solution to Exercise 3

OK, let’s start with functions for checking the assumptions.� �
function areAllDistributionsNormal(vects::Vector{<:Vector{<:Real}})::Bool

return [getSWtestPval(v) for v in vects] |>
pvals −> map(pv −> pv > 0.05, pvals) |>

all
end

function areAllVariancesEqual(vects::Vector{<:Vector{<:Real}})

COMPARISONS - CONTINUOUS DATA 153

return Ht.FlignerKilleenTest(vects...) |>
Ht.pvalue |> pv −> pv > 0.05

end� �
The functions above are basically just wrappers around the code we wrote in
Section 5.5. Now, time for getPValUnpairedTest� �
function getPValUnpairedTest(

v1::Vector{<:Real}, v2::Vector{<:Real})::Float64

normality::Bool = areAllDistributionsNormal([v1, v2])
homogeneity::Bool = areAllVariancesEqual([v1, v2])

return (
(normality && homogeneity) ? Ht.EqualVarianceTTest(v1, v2) :
(normality) ? Ht.UnequalVarianceTTest(v1, v2) :
Ht.MannWhitneyUTest(v1,v2)
) |> Ht.pvalue

end� �
The code is rather self-explanatory, of course if you remember the ternary ex-
pression from Section 3.5.2 and Section 3.9.4.

Let’s test our newly created function with the data from Section 5.3.2 (miceBwt)� �
getPValUnpairedTest([miceBwt[!, n] for n in Dfs.names(miceBwt)]...) |>
x −> round(x, digits=4)� �
0.0804

The p-value is the same as in Section 5.3.2 (as it should be), but this time we
didn’t have to explicitly check the assumptions before applying the appropri-
ate test.

5.8.4 Solution to Exercise 4

First, let’s start with a helper function that will return us all the possible pairs
from a vector.� �
function getUniquePairs(uniqueNames::Vector{T})::Vector{Tuple{T,T}} where T

@assert (length(uniqueNames) >= 2) "the input must be of length >= 2"

uniquePairs::Vector{Tuple{T,T}} =
Vector{Tuple{T,T}}(undef, binomial(length(uniqueNames), 2))

currInd::Int = 1

154 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

65 https://docs.julialang
.org/en/v1/base/math
/#Base.binomial

for i in eachindex(uniqueNames)[1:(end−1)]
for j in eachindex(uniqueNames)[(i+1):end]

uniquePairs[currInd] = (uniqueNames[i], uniqueNames[j])
currInd += 1

end
end

return uniquePairs
end� �
The function is generic, so it can be applied to vector of any type (T), here de-
signed as Vector{T}. It starts by initializing an empty vector (uniquePairs) to hold
the results. The initialization takes the following form: Vector{typeOfVectElements
↪→}(iniaialValues, lengthOfTheVector). The vector is filled with undefs (unde-
fined values, some garbage) as placeholders. The size of the new vector is
calculated by the binomial65 function. It is applied in the form binomial(n, k)
↪→ where n is number of values to choose from and k is number of values per
group. The function returns the number of possible groups of a given size. The
rest is just iteration (for loops) over the indexes (eachindex) of the uniqueNames
vector to get all the possible pairs. Let’s quickly check if the function works as
expected.� �
(

getUniquePairs([10, 20]),
getUniquePairs([1.1, 2.2, 3.3]),
getUniquePairs(["w", "x", "y", "z"]), # vector of one element Strings
getUniquePairs(['a', 'b', 'c']), # vector of Chars
getUniquePairs(['a', 'b', 'a']) # uniqueNames must be unique (of course)

)� �
([(10, 20)],
[(1.1, 2.2), (1.1, 3.3), (2.2, 3.3)],
[("w", "x"), ("w", "y"), ("w", "z"), ("x", "y"), ("x", "z"), ("y", "z")],
[('a', 'b'), ('a', 'c'), ('b', 'c')],
[('a', 'b'), ('a', 'a'), ('b', 'a')])

Note: The group (“w”, “x”) is the same group as (“x”, “w”). In other words, we
don’t care about the order of elements in a group. The function works correctly if
uniqueNames argument contains unique elements (compare with the last example
that contains a duplicate value). If you want you can add an additional check to
make sure that the uniqueNames are really unique (think/search the internet how
to do that), but I will leave it as it is.

OK, now it’s time for getPValsUnpairedTests

https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial
https://docs.julialang.org/en/v1/base/math/#Base.binomial

COMPARISONS - CONTINUOUS DATA 155

� �
df − DataFrame: each column is a continuous variable (one group)
returns uncorrected p−values
function getPValsUnpairedTests(

df::Dfs.DataFrame)::Dict{Tuple{String,String},Float64}

pairs::Vector{Tuple{String,String}} = getUniquePairs(Dfs.names(df))
pvals::Vector{Float64} = [

getPValUnpairedTest(df[!, a], df[!, b])
for (a, b) in pairs

]

return Dict(pairs[i] => pvals[i] for i in eachindex(pairs))
end� �
First, we obtain the pairs of group names that we will compare later (pairs).
In the next few lines we use a comprehension to obtain the p-values. Since
each element of pairs vector is a tuple (e.g. [("spA", "spB"), etc.]) we assign
its elements to a and b (for (a, b)) and pass them to df to get the values of
interest (e.g. df[!, a]). The values are send to getPValUnpairedTest from the pre-
vious section. We terminate (return) with another comprehension that creates
a dictionary with the desired result.

Let’s see how the function works and compare the results with the ones we
obtained in Section 5.5.� �
getPValsUnpairedTests(miceBwtABC)� �
Dict{Tuple{String, String}, Float64} with 3 entries:
("spA", "spB") => 0.0251115
("spA", "spC") => 0.000398545
("spB", "spC") => 0.0493322

OK, the uncorrected p-values are the same as in Section 5.5.

Now, the improved version.� �
df − DataFrame: each column is a continuous variable (one group)
returns corrected p−values
function getPValsUnpairedTests(

df::Dfs.DataFrame,
multCorr::Type{M}

)::Dict{Tuple{String,String},Float64} where {M<:Mt.PValueAdjustment}

pairs::Vector{Tuple{String,String}} = getUniquePairs(Dfs.names(df))
pvals::Vector{Float64} = [

getPValUnpairedTest(df[!, a], df[!, b])

156 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

66 https://github.com/j
uliangehring/MultipleT
esting.jl

67 https://docs.makie.o
rg/stable/examples/plo
tting_functions/boxplo
t/index.html#boxplot

for (a, b) in pairs
]
pvals = Mt.adjust(pvals, multCorr())

return Dict(pairs[i] => pvals[i] for i in eachindex(pairs))
end� �
Don’t worry about the strange type declarations like ::Type{M} and where {M<:Mt
↪→.PValueAdjustment}. I added them for the sake of consistency (after reading
the code in the package repo66 and some try and error). When properly called,
the function should work equally well without those parts.

Anyway, itwasn’t that bad,we basically just added a small piece of code (multCorr
↪→ in the arguments list and pvals = Mt.adjust(pvals, multCorr()) in the function
body) similar to the one in Section 5.6.

Let’s see how it works.� �
Bonferroni correction
getPValsUnpairedTests(miceBwtABC, Mt.Bonferroni)� �
Dict{Tuple{String, String}, Float64} with 3 entries:
("spA", "spB") => 0.0753345
("spA", "spC") => 0.00119563
("spB", "spC") => 0.147997

That looks quite alright. Time for one more swing.� �
Benjamini−Hochberg correction
getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg)� �
Dict{Tuple{String, String}, Float64} with 3 entries:
("spA", "spB") => 0.0376673
("spA", "spC") => 0.00119563
("spB", "spC") => 0.0493322

Again, the p-values appear to be the same as those we saw in Section 5.6.

5.8.5 Solution to Exercise 5

OK, let’s do this step by step. First let’s draw a bare box-plot (no group names,
no significance markers, titles, etc.).

The docs for Cmk.boxplot67 show that to do that we need two vectors for xs
and ys (values to be placed on the x- and y-axis respectively). Both need to be
of numeric types. We can achieve it by typing, e.g.

https://github.com/juliangehring/MultipleTesting.jl
https://github.com/juliangehring/MultipleTesting.jl
https://github.com/juliangehring/MultipleTesting.jl
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot
https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.html#boxplot

COMPARISONS - CONTINUOUS DATA 157

� �
Step 1
ex5nrows = size(miceBwtABC)[1] #1
ex5names = Dfs.names(miceBwtABC) #2
ex5xs = repeat(eachindex(ex5names), inner=ex5nrows) #3
ex5ys = [miceBwtABC[!, n] for n in ex5names] #4
ex5ys = vcat(ex5ys...) #5

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1])
Cmk.boxplot!(ax1, ex5xs, ex5ys)
fig� �
In the first line (#1) we get the dimensions of our data frame, size(miceBwtABC)
returns a tuple (numberOfRows, numberOfColumns) fromwhichwe take only the first
part (numberOfRows) that we will need later. In line 3 (#3) we assign a number
to the names (eachindex(vect) returns a sequence 1:length(vect), e.g. [1, 2, 3]).
We multiply each number the same amount of times (ex5nrows) using repeat
(e.g. repeat([1, 2, 3], inner=2) returns [1, 1, 2, 2, 3, 3]). In line 4 and 5 (#4
and #5) we take all the body weights from columns and put them into a one
long vector (ex5ys). We end upwith two vectors: groups coded as integers and
body weights. Finally, we check if it works by running Cmk.boxplot!(fig[1, 1],
↪→ex5xs, ex5ys). The result is below.

Figure 5.9: Box-plot for
exercise 5. Step 1.

158 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Now, let’s add title, label the axes, etc.� �
Step 2
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="Body mass of three mice species",
xlabel="species name", ylabel="body mass [g]",
xticks=(eachindex(ex5names), ex5names))

Cmk.boxplot!(ax1, ex5xs, ex5ys, whiskerwidth=0.5)
fig� �
The new part here is the xticks argument. It takes a tuple of ticks on x axis (1:3
in Figure 5.9) and a vector of strings (ex5names) to be displayed instead of those
values. The meaning of whiskerwidth is pretty intuitive, it adds a horizontal bar
of desired width at the end of the whiskers. The result is placed below.

Figure 5.10: Box-plot
for exercise 5. Step 2.

Let’s move on to the significance markers. First, let’s hard-code them and pro-
duce a plot (just to see if it works), thenwewill introduce some improvements.� �
Step 3
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="Body mass of three mice species",
xlabel="species name", ylabel="body mass [g]",
xticks=(eachindex(ex5names), ex5names))

Cmk.boxplot!(ax1, ex5xs, ex5ys, whiskerwidth=0.5)

COMPARISONS - CONTINUOUS DATA 159

Cmk.text!(ax1,
eachindex(ex5names), [30, 30, 30],
text=["", "a", "ab"],
align=(:center, :top), fontsize=20)

fig� �
OK, we’re almost there (see figure below).

Figure 5.11: Box-plot
for exercise 5. Step 3.

However, it appears that we still need a few things:

1) a way to generate y-values for Cmk.text! (for now it is [30, 30, 30], but other
dataframes may have different value ranges, e.g. [200-250] and then the
markers would be placed too low)

2) a way to generate the markers (e.g. ["", "a", "ab"] based on p-values) over
the appropriate boxes

The first problem can be solved in the following way:� �
Step 4
ex5marksYpos = [maximum(miceBwtABC[!, n]) for n in ex5names] #1
ex5marksYpos = map(mYpos −> round(Int, mYpos ∗ 1.1), ex5marksYpos) #2
ex5upYlim = maximum(ex5ys ∗ 1.2) |> x −> round(Int, x) #3
ex5downYlim = minimum(ex5ys ∗ 0.8) |> x −> round(Int, x) #4� �

160 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Here, in the first line (#1)we getmaximumvalues from every group. Then (#2)
we increase them by 10% (∗ 1.1) and round them to the closest integers (round(
↪→Int,). At this height (y-axis) we are going to place our significance markers.
Additionally, in lines 3 and 4 (#3 and #4)we found themaximumandminimum
values (for all the data). We increase (∗ 1.2) and decrease (∗ 0.8) the values
by 20%. The rounded (to the nearest integer) values will be the maximum and
minimum values displayed on the y-axis of our graph.

Now, time for a function that will translate p-values to significance markers.� �
Step 5
function getMarkers(

pvs::Dict{Tuple{String,String},Float64},
groupsOrder=["spA", "spB", "spC"],
markerTypes::Vector{String}=["a", "b", "c"],
cutoffAlpha::Float64=0.05)::Vector{String}

@assert (
length(groupsOrder) == length(markerTypes)

) "different groupsOrder and markerTypes lengths"
@assert (0 <= cutoffAlpha <= 1) "cutoffAlpha must be in range [0−1]"

markers::Vector{String} = repeat([""], length(groupsOrder))
tmpInd::Int = 0

for i in eachindex(groupsOrder)
for ((g1, g2), pv) in pvs

if (groupsOrder[i] == g1) && (pv <= cutoffAlpha)
tmpInd = findfirst(x −> x == g2, groupsOrder)
markers[tmpInd] ∗= markerTypes[i]

end
end

end

return markers
end� �
Here, getMarkers accepts p-values in the format returned by getPValsUnpairedTests
↪→ defined in Section 5.8.4. Another input argument is groupsOrder which con-
tains the position of groups (boxes, x-axis labels) in Figure 5.11 from left to
right. The third argument is makrerTypes so a symbol that is to be used if a sta-
tistical difference for a given group is found.

The function defines markers (the strings placed over each box with Cmk.txt)
initialized with a vector of empty strings. Next, it walks through each index in
group (eachindex(groups)) and checks the ((g1, g2), pv) in p-values (pvs). If g1
is equal to the examined group (groups[i] == g1) and the p-value (pv) is ≤ the
cutoff level then the appropriate marker (markerTypes[i]) is inserted by string

COMPARISONS - CONTINUOUS DATA 161

68 https://docs.julialang
.org/en/v1/manual/stri
ngs/#man-concatenati
on
69 https://docs.julialang
.org/en/v1/manual/ma
thematical-operations/
#Updating-operators
70 https://docs.julialang
.org/en/v1/base/string
s/#Base.findfirst-Tuple
%7BAbstractString,%2
0AbstractString%7D

concatenation68 with an update operator69 (∗=). Which maker to change is
determined by the index of g2 in the groups returned by findfirst70 function.
In general, g2 receives a marker when it is statistically different from g1 (pv <
↪→cutoffAlpha).

Let’s test our function� �
(
getMarkers(

getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg),
["spA", "spB", "spC"],
["a", "b", "c"],
0.05),

getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg)
)� �
(["", "a", "ab"],
Dict(("spA", "spB") => 0.0376672521079031,
("spA", "spC") => 0.001195633577293774,
("spB", "spC") => 0.049332195639921715))

The markers appear to be OK (they reflect the p-values well).

Now, it is time to pack it all into a separate function� �
Step 6

the function should work fine for up to 26 groups in the df's columns
function drawBoxplot(

df::Dfs.DataFrame, title::String,
xlabel::String, ylabel::String)::Cmk.Figure

nrows, _ = size(df)
ns::Vector{String} = Dfs.names(df)
xs = repeat(eachindex(ns), inner=nrows)
ys = [df[!, n] for n in ns]
ys = vcat(ys...)
marksYpos = [maximum(df[!, n]) for n in ns]
marksYpos = map(mYpos −> round(Int, mYpos ∗ 1.1), marksYpos)
upYlim = maximum(ys ∗ 1.2) |> x −> round(Int, x)
downYlim = minimum(ys ∗ 0.8) |> x −> round(Int, x)
'a':'z' generates all lowercase chars of the alphabet
markerTypes::Vector{String} = map(string, 'a':'z')
markers::Vector{String} = getMarkers(

getPValsUnpairedTests(df, Mt.BenjaminiHochberg),
ns,
markerTypes[1:length(ns)],
0.05

https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-operators
https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstractString,%20AbstractString%7D
https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstractString,%20AbstractString%7D
https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstractString,%20AbstractString%7D
https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstractString,%20AbstractString%7D
https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstractString,%20AbstractString%7D

162 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

)

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title=title, xlabel=xlabel, ylabel=ylabel,
xticks=(eachindex(ns), ns))

Cmk.boxplot!(ax1, xs, ys, whiskerwidth=0.5)
Cmk.ylims!(ax1, downYlim, upYlim)
Cmk.text!(ax1,

eachindex(ns), marksYpos,
text=markers, align=(:center, :top), fontsize=20)

return fig
end� �
and run it� �
drawBoxplot(miceBwtABC,

"Body mass of three mice species",
"species name",
"body mass [g]"

)� �
And voilà this is your result

Figure 5.12: Boxplot
of body mass of three
mice species (fictitious
data). Steps 1-6 (com-
pleted). a - difference
vs. spA (p < 0.05), b -
difference vs. spB (p <
0.05).

COMPARISONS - CONTINUOUS DATA 163

71 https://en.wikipedia
.org/wiki/Median
72 https://en.wikipedia
.org/wiki/Interquartil
e_range

Once again (we said this already in the task description see Section 5.7.5). In
the graph above amiddle horizontal line in a box is themedian71, a box depicts
interquartile range72 (IQR), the whiskers length is equal to 1.5 * IQR (or the
maximum and minimum if they are smaller than 1.5 * IQR).

You could make the function more plastic, e.g. by moving some of its insides
to its argument list. But this form will do for now. You may want to test the
function with some other output, even with miceBwt from Section 5.3 (here it
should draw a box-plot with no statistical significance markers).

Note: The codewedeveloped in the exercises (e.g. getPValsUnpairedTests, drawBoxplot
↪→) is to help us automate stuff, still it shouldn’t be applied automatically (think
before you leap).

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range

1 https://docs.julialang
.org/en/v1/stdlib/Pkg/

2 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch06
3 https://pkgdocs.julial
ang.org/v1/environme
nts/

6 Comparisons - categorical data

OK, once we have comparisons of continuous data under our belts we can
move to groups of categorical data.

6.1 Chapter imports

Later in this chapter we are going to use the following libraries� �
import CairoMakie as Cmk
import DataFrames as Dfs
import Distributions as Dsts
import HypothesisTests as Ht
import MultipleTesting as Mt
import Random as Rand� �
If you want to follow along you should have them installed on your system. A
reminder of how to deal (install and such) with packages can be found here1.
But wait, you may prefer to use Project.toml and Manifest.toml files from the
code snippets for this chapter2 to install the required packages. The instruc-
tions you will find here3.

The imports will be placed in the code snippet when first used, but I thought
it is a good idea to put them here, after all imports should be at the top of your
file (so here they are at the top of the chapter). Moreover, that way they will
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from
the ∗.jl file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

6.2 Flashback

Wedeal with categorical data when a variable can take a value from a small set
of values. Each element of the set is clearly distinct from the other elements.
For instance the results of coin tosses or dice rolls fall into one of a few distinc-
tive categories. As stated in Section 4 and its subsections the result of a coin

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/

166 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#
Binomial-test

toss often displays the binomial distribution. In line with that notion, in Ex-
ercise 3 (see Section 4.8.3 and Section 4.9.3) we calculated the probability that
Peter is a better tennis player than John if he won 5 games out of 6. The two-
tailed probability was roughly equal to 0.22. Once we know the logic behind
the calculations (see Section 4.9.3) we can fast forward to the solution with
Ht.BinomialTest4 like so� �
import HypothesisTests as Ht

Ht.BinomialTest(5, 6, 0.5)
or just: Ht.BinomialTest(5, 6)
since 0.5 is the default prob. for the population� �
Binomial test
−−−−−−−−−−−−−
Population details:

parameter of interest: Probability of success
value under h_0: 0.5
point estimate: 0.833333
95% confidence interval: (0.3588, 0.9958)

Test summary:
outcome with 95% confidence: fail to reject h_0
two−sided p−value: 0.2187

Details:
number of observations: 6
number of successes: 5

Works like a charm. Don’t you think. Here we got a two-tailed p-value. By
oversimplifying stuffwe can say that the 95% confidence interval is an estimate
of the true probability of Peter’s victory in a game (from data it is 5/6 = 0.83)
and it includes 0.5 (our probability under 𝐻0 = 0.5). I leave the rest of the
output to decipher to you (as a mini-exercise).

In general Ht.BinomialTest is useful when you want to compare the obtained
experimental result that may fall into one of two categories (generally called:
success or failure) with a theoretical binomial distributionwith a known prob-
ability of success (we check if the obtained result is compatible with that dis-
tribution). If we interpret this statement in a more creative way we may find
other use cases for the test.

Let’s look at an interesting example from the field of biological sciences. Imag-
ine that there is some disease that you want to study. Its prevalence in the
general population is estimated to be ≈ 10

100 = 0.1 = 10% . You happened to
found a human population on a desert island and noticed that 519 adults out

https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test

COMPARISONS - CATEGORICAL DATA 167

5 https://en.wikipedia.o
rg/wiki/Akimel_O%2
7odham
6 https://en.wikipedia.o
rg/wiki/Type_2_diabe
tes

of 3’202 suffer from the disease of interest. You run the test to see if that differs
from the general population [here success (if I may call it so) is the presence
of the disease, and theoretical distribution is the distribution of the disease in
the general population].� �
Ht.BinomialTest(519, 3202, 0.1)� �
Binomial test
−−−−−−−−−−−−−
Population details:

parameter of interest: Probability of success
value under h_0: 0.1
point estimate: 0.162086
95% confidence interval: (0.1495, 0.1753)

Test summary:
outcome with 95% confidence: reject h_0
two−sided p−value: <1e−26

Details:
number of observations: 3202
number of successes: 519

And it turns out that it does. Congratulations, you discovered a local popu-
lation with a different, clearly higher prevalence of the disease. Now you (or
other people) can study the population closer (e.g. gene screening) in order
to find the features that trigger the onset of (or predispose to develop) the
disease.

The story is not that far fetched since there are human populations that are of
particular interest to scientists due to their unusually common occurrence of
some diseases (e.g. the Akimel O’odham5 and their high prevalence of type 2
diabetes6).

6.3 Chi squared test

Wefinished the previous section by comparing the proportion of subjects with
some feature to the reference population. For that we used Ht.BinomialTest. As
we learned in Section 4.6 the word binomial means two names. Those names
could be anything, like heads and tails, victory and defeat, but most gener-
ally they are called success and failure (success when an event occurred and
failure when it did not). We can use a to denote individuals with the feature
of interest and b to denote the individuals without that feature. In that case n
is the total number of individuals (here, individuals with either a or b). That
means that by doing Ht.BinomialTest we compared the sample fraction (e.g. 𝑎

𝑛

https://en.wikipedia.org/wiki/Akimel_O%27odham
https://en.wikipedia.org/wiki/Akimel_O%27odham
https://en.wikipedia.org/wiki/Akimel_O%27odham
https://en.wikipedia.org/wiki/Type_2_diabetes
https://en.wikipedia.org/wiki/Type_2_diabetes
https://en.wikipedia.org/wiki/Type_2_diabetes

168 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

7 https://en.wikipedia.o
rg/wiki/Eye_color

8 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#
Binomial-test
9 https://juliastats.org
/HypothesisTests.jl/st
able/parametric/#Pears
on-chi-squared-test
10 https://en.wikipedia
.org/wiki/Chi-squared
_test

or equivalently 𝑎
𝑎+𝑏) with the assumed fraction of individuals with the feature

of interest in the general population.

Now, imagine a different situation. You take the samples from two popula-
tions, and observe the eye color7 of people. Youwant to know if the percentage
of people with blue eyes in the two populations is similar. If it is, then youmay
deduce they are closely related (perhaps one stems from the other). Let’s not
look too far, let’s just take the population of the US and UK. Inspired by the
Wikipedia’s page from the link above and supported by the random number
generator in Julia I came up with the following counts.� �
import DataFrames as Dfs

dfEyeColor = Dfs.DataFrame(
Dict(

"eyeCol" => ["blue", "any"],
"us" => [161, 481],
"uk" => [220, 499]

)
)� �

Table 6.1: Eye color
distribution in two
samples (fictitious
data).

eyeCol uk us

blue 220 161
any 499 481

Here, we would like to compare if the two proportions (𝑎1
𝑛1

= 161
481 and 𝑎2

𝑛2
=

220
499) are roughly equal (𝐻0: they come from the same population with some
fraction of blue eyed people). Unfortunately, one look into the docs8 and we
see thatwe cannot use Ht.BinomialTest (the test compares samplewith a popula-
tion, herewe got two samples to compare). But do not despair that’s the job for
Ht.ChisqTest9 (see also this Wikipedia’s entry10). First we need to change our
data slightly, because the test requires a matrix (aka array from Section 3.3.7)
with the following proportions in columns: 𝑎1

𝑏1
and 𝑎2

𝑏2
(b instead of n, where n

= a + b). Let’s adjust our data for that.� �
subtracting eye color "blue" from eye color "any"
dfEyeColor[2, 2:3] = Vector(dfEyeColor[2, 2:3]) .−

Vector(dfEyeColor[1, 2:3])
renaming eye color "any" to "other" (it better reflects current content)
dfEyeColor[2, 1] = "other"
dfEyeColor

all the elements must be of the same (numeric) type
mEyeColor = Matrix{Int}(dfEyeColor[:, 2:3])
mEyeColor� �

https://en.wikipedia.org/wiki/Eye_color
https://en.wikipedia.org/wiki/Eye_color
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#Pearson-chi-squared-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#Pearson-chi-squared-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#Pearson-chi-squared-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#Pearson-chi-squared-test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test

COMPARISONS - CATEGORICAL DATA 169

2×2 Matrix{Int64}:
220 161
279 320

OK,wegot the necessary data structure. Here, Matrix{Int}() closed over dfEyeColor
↪→[:, 2:3] extracts the needed part of the data frame and converts it to amatrix
(aka array) of integers. And now for the 𝜒2 (chi squared) test.� �
Ht.ChisqTest(mEyeColor)� �
Pearson's Chi−square Test
−−−−−−−−−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Multinomial Probabilities
value under h_0: [0.197958, 0.311226, 0.190817, 0.299999]
point estimate: [0.22449, 0.284694, 0.164286, 0.326531]
95% confidence interval:
[(0.193, 0.2595), (0.2501, 0.322), (0.1369, 0.196), (0.2903, 0.3649)]

Test summary:
outcome with 95% confidence: reject h_0
one−sided p−value: 0.0007

Details:
Sample size: 980
statistic: 11.616133413434031
degrees of freedom: 1
residuals: [1.86677, −1.48881, −1.90138, 1.51641]
std. residuals: [3.40824, −3.40824, −3.40824, 3.40824]

OK, first of all we can see right away that the p-value is below the customary
cutoff level of 0.05 or even 0.01. This means that the samples do not come
from the same population (we reject 𝐻0). More likely they came from the
populations with different underlying proportions of blue eyed people. This
could indicate for instance, that the population of theUS stemmed from theUK
(at least partially) but it has a greater admixture of other cultures, which could
potentially influence the distribution of blue eyed people. Still, this is just an
exemplary explanation, I’m not an anthropologist, so it may well be incorrect.
Additionally, remember that the data is fictitious and was generated by me.

Anyway, I’m pretty sure You got the part with the p-value on your own, but
what are some of the other outputs. Point estimates are the observed proba-
bilities in each of the cells from mEyeColor. Observe� �
total number of observations
nObsEyeColor = sum(mEyeColor)

170 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

11 https://en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Nested_loops

chi2pointEstimates = [mEyeColor...] ./ nObsEyeColor
round.(chi2pointEstimates, digits = 6)� �
[0.22449, 0.284694, 0.164286, 0.326531]

The [mEyeColor...] flattens the 2x2 matrix (2 rows, 2 columns) to a vector (col-
umn 2 is appended to the end of column 1). The ./ nObsEyeColor divides the
observations in each cell by the total number of observations.

95% confidence interval is a 95% confidence interval (whowould have guessed)
similar to the one explained in Section 5.2.1 for Ht.OneSampleTTest but for each of
the point estimates in chi2pointEstimates. Some (over)simplify it and say that
within those limits the true probability for this group of observations most
likely lies.

As for the value under h_0 those are the probabilities of the observations being in
a given cell of mEyeColor assuming 𝐻0 is true. But how to get that probabilities.
Well, in a similar way to the method we met in Section 4.3. Back then we
answered the following question: If parents got blood groups AB and O then
what is the probability that a child will produce a gamete with allele A? The
answer: proportion of children with allele A and then the proportion of their
gametes with allele A (see Section 4.3 for details). We calculated it using the
following formula

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 𝑃(𝐴 𝑖𝑛 𝐶) ∗ 𝑃(𝐴 𝑖𝑛 𝑔𝑎𝑚𝑒𝑡𝑒𝑠 𝑜𝑓 𝐶 𝑤𝑖𝑡ℎ 𝐴)

Getting back to our mEyeColor the expected probability of an observation falling
into a given cell of the matrix is the probability of an observation falling into a
given column times the probability of an observation falling into a given row.
Observe� �
cProbs − probability of a value to be found in a given column
cProbs = [sum(c) for c in eachcol(mEyeColor)] ./ nObsEyeColor
rProbs − probability of a value to be found in a given row
rProbs = [sum(r) for r in eachrow(mEyeColor)] ./ nObsEyeColor

probability of a value to be found in a given cell of mEyeColor
under H_0 (the samples are from the same population)
probsUnderH0 = [cp ∗ rp for cp in cProbs for rp in rProbs]
round.(probsUnderH0, digits = 6)� �
[0.197958, 0.311226, 0.190817, 0.299999]

Here, [cp ∗ rp for cp in cProbs for rp in rProbs] is an example of nested for loops11

https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops

COMPARISONS - CATEGORICAL DATA 171

enclosed in a comprehension. Notice that in the case of this comprehension
there is no comma before the second for (the comma is present in the long,
non-comprehension version of nested for loops in the link above).

Anyway, note that since the calculations from Section 4.3 assumed the prob-
ability independence, then the same assumption is made here. That means
that, e.g. a given person cannot be classified at the same time as the citizen of
the US and UK since we would have openly violated the assumption (some
countries allow double citizenship, so you should think carefully about the in-
clusion criteria for the categories). Moreover, the eye color also needs to be a
clear cut.

Out of the remaining output we are mostly interested in the statistic, namely
𝜒2 (chi square) statistic. Under the null hypothesis (𝐻0, both groups come
from the same population with a given fraction of blue eyed individuals) the
probability distribution for counts to occur is called 𝜒2 (chi squared) distribu-
tion. Next, we calculate 𝜒2 (chi squared) statistic for the observed result (from
mEyeColor). Then, we obtain the probability of a statistic greater than that to oc-
cur by chance. This is similar to the F-Statistic (Section 5.4) and L-Statistic
(Section 5.8.2) we met before. Let’s see this in practice� �
observedCounts = [mEyeColor...]
expectedCounts = probsUnderH0 .∗ nObsEyeColor
the statisticians love squaring numbers, don't they
chi2Diffs = ((observedCounts .− expectedCounts) .^2) ./ expectedCounts
chi2Statistic = sum(chi2Diffs)

(
observedCounts,
round.(expectedCounts, digits = 4),
round.(chi2Diffs, digits = 4),
round(chi2Statistic, digits = 4)

)� �
([220, 279, 161, 320],
[193.999, 305.001, 187.001, 293.999],
[3.4848, 2.2166, 3.6152, 2.2995],
11.6161)

The code is rather self explanatory. BTW. You might have noticed that: a)
statisticians love squaring numbers (differences), and b) there are some simi-
larities to the calculations of expected values from Section 4.5. Anyway, now,
we can use the 𝜒2 statistic to get the p-value, like so� �
import Distributions as Dsts

function getDf(matrix::Matrix{Int})::Int

172 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

12 https://en.wikipedia
.org/wiki/Fisher%27s_e
xact_test

13 https://juliastats.org
/HypothesisTests.jl/st
able/nonparametric/#Fi
sher-exact-test

nRows, nCols = size(matrix)
return (nRows − 1) ∗ (nCols − 1)

end

p−value
alternative: Dsts.ccdf(Dsts.Chisq(getDf(mEyeColor)), chi2Statistic)
1 − Dsts.cdf(Dsts.Chisq(getDf(mEyeColor)), chi2Statistic) |>

x −> round(x, digits = 4)� �
0.0007

So, the pattern is quite similar towhatwedid in the case of F-Distribution/Statistic
in Section 5.7.2. First we created the distribution of interest with the appropri-
ate number of the degrees of freedom(why only the degrees of freedommatter
see the conclusion of Section 5.8.2). Then we calculated the probability of a 𝜒2

Statistic being greater than the observed one by chance alone and that’s it.

6.4 Fisher’s exact test

This was all nice, but there is a small problem with the 𝜒2 test, namely it relies
on some approximations and works well only for large sample sizes. How
large, well, I’ve heard about the rule of fives (that’s what I called it). The rule
states that there should be>= 50 (not quite 5) observations permatrix and>=
5 expected observations per cell (applies to every cell). In case this assumption
does not hold, one should use, e.g. Fisher’s exact test12 (Fisher, yes, I think I
heard that name before).

So let’s assume for a moment that we were able to collect somewhat less data
like in the matrix below:� �
mEyeColorSmall = round.(Int, mEyeColor ./ 20)
mEyeColorSmall� �
2×2 Matrix{Int64}:
11 8
14 16

Here, we reduced the number of observations 20 times compared to the orig-
inal mEyeColor matrix from the previous section. Since the test we are going
to apply (Ht.FisherExactTest13) requires integers then instead of rounding a
number to 0 digits [e.g. round(12.3, digits = 0) would return 12.0, so Float64]
we asked the round function to deliver us the closest integers (e.g. 12).

https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fisher-exact-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fisher-exact-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fisher-exact-test
https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fisher-exact-test

COMPARISONS - CATEGORICAL DATA 173

OK, let’s, run the said Ht.FisherExactTest. Right away we see a problem, the test
requires separate integers as input: Ht.FisherExactTest(a::Integer, b::Integer, c
↪→::Integer, d::Integer).

Note: Just like Real type from Section 3.4 also Integer is a supertype. It encom-
passes, e.g. Int and BigInt we met in Section 3.9.5.

Still, we can obtain the necessary results very simply, by:� �
assignment goes column by column (left to right), value by value
a, c, b, d = mEyeColorSmall

Ht.FisherExactTest(a, b, c, d)� �
Fisher's exact test
−−−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Odds ratio
value under h_0: 1.0
point estimate: 1.55691
95% confidence interval: (0.4263, 5.899)

Test summary:
outcome with 95% confidence: fail to reject h_0
two−sided p−value: 0.6373

Details:
contingency table:

11 8
14 16

We are not going to discuss the output in detail. Still, we can see that here due
to the small sample size we don’t have enough evidence to reject the 𝐻0 (p >
0.05) on favor of 𝐻𝐴. Interestingly, due to the small sample size we came to
a different conclusion despite the same underlying populations and the same
proportions. Let’s make an analogy here and let’s take it to an extreme. Imag-
ine I got two coins in my pocket, one fair (50/50 heads to tails rate) and one
biased (70/30 heads to tails ratio). I give you one to find out which coin it is.
That’s easy to settle out with 1’000 tosses (since you wold get, e.g. 688/312
heads to tails ratio instead of 494/506), but it is not possible to do it with just
one toss (no matter the outcome). With three tosses and two heads we still
cannot be sure of it since a fair coin would have produced this exact output
with the probability of 37.5% (HHT, or THH, or HTH each with p = 1

2
3 = 1

8 = 0.125)
and more extreme (HHH) with the probability = 12.5% (1

2
3 = 1

8 = 0.125). So,
there just wouldn’t be enough evidence.

174 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

6.5 Bigger table

We started Section 6.3 with a fictitious eye color distribution [blue and other,
rows (top-down) in the matrix below] in the US and UK [columns (left-right)
in the matrix below].� �
mEyeColor� �
2×2 Matrix{Int64}:
220 161
279 320

But in reality there are more eye colors than just blue and other. For instance
let’s say that in humanswe got three types of eye color: blue, green, and brown.
Let’s adjust our table for that:� �
3 x 2 table (DataFrame)
dfEyeColorFull = Dfs.DataFrame(

Dict(
"other" from dfEyeColor is split into "green" and "brown"
"eyeCol" => ["blue", "green", "brown"],
"us" => [161, 78, 242],
"uk" => [220, 149, 130]

)
)

mEyeColorFull = Matrix{Int}(dfEyeColorFull[:, 2:3])
mEyeColorFull� �
3×2 Matrix{Int64}:
220 161
149 78
130 242

Can we say that the two populations differ (with respect to the eye color dis-
tribution) given the data in this table? Well, we can, that’s the job for … chi
squared (𝜒2) test.

Wait, but I thought it is used to compare two proportions found in some sam-
ples. Granted, it could be used for that, but in broader sense it is a non-
parametric test that determines the probability that the difference between
the observed and expected frequencies (counts) occurred by chance alone.
Here, non-parametric means it does not assume a specific underlying distri-
bution of data (like the normal or binomial distribution we met before). As
we learned in Section 6.3 the expected distribution of frequencies (counts) is
assessed based on the data itself.

COMPARISONS - CATEGORICAL DATA 175

14 https://en.wikipedia
.org/wiki/Eagle_(Unit
ed_States_coin)
15 https://en.wikipedia
.org/wiki/One_pound_
(British_coin)
16 https://www.goog
le.com/search?sca_es
v=571684704&q=three
+sided+dice&tbm=isc
h&source=lnms&sa=
X&ved=2ahUKEwj1k-b
B-uWBAxUa3AIHHW
DvDoIQ0pQJegQIDB
AB&biw=1437&bih=6
96&dpr=1.33

Let’s give it a try with our new data set (mEyeColorFull) and compare it with the
previously obtained results (for mEyeColor from Section 6.3).� �
chi2testEyeColor = Ht.ChisqTest(mEyeColor)
chi2testEyeColorFull = Ht.ChisqTest(mEyeColorFull)

(
chi^2 statistics
round(chi2testEyeColorFull.stat, digits = 2),
round(chi2testEyeColor.stat, digits = 2),

p−values
round(chi2testEyeColorFull |> Ht.pvalue, digits = 7),
round(chi2testEyeColor |> Ht.pvalue, digits = 7)

)� �
(64.76, 11.62,
0.0, 0.0006538)

That’s odd. All we did was to split the other category from dfEyeColor (and
therefore mEyeColor) into green and brown to create dfEyeColorFull (and therefore
mEyeColorFull) and yet we got different 𝜒2 statistics, and different p-values.
How come?

Well, because we are comparing different things (and different populations).

Imagine that in the case of dfEyeColor (and mEyeColor) we actually compare not
the eye color, but currency of both countries. So, we change the labels in our
table. Instead of blue we got heads and instead of other we got tails and instead
of us we got eagle14 and instead of uk we got one pound15. We want to test if
the proportion of heads/tails is roughly the same for both the coins.

Whereas in the case of dfEyeColorFull (and mEyeColorFull) imagine we actually
compare not the eye color, but three sided dice16 produced in those countries.
So, we change the labels in our table. Instead of blue we got 1 and instead of
green we got 2, instead of brown we got 3 (1, 2, 3 is a convention, equally well one
could write on the sides of a dice, e.g. Tom, Alice, and John). We want to test if
the distribution of 1s, 2s, and 3s is roughly the same for both types of dice.

Now, it so happened that the number of dice throws was the same that the
number of coin tosses from the example above. It also happened that the num-
ber of 1s was the same as the number of heads from the previous example. Still,
we are comparing different things (coins and dices) and so we would not ex-
pect to get the same results from our chi squared (𝜒2) test. And that is how
it is, the test is label blind. All it cares is the difference between the observed
and expected frequencies (counts).

https://en.wikipedia.org/wiki/Eagle_(United_States_coin)
https://en.wikipedia.org/wiki/Eagle_(United_States_coin)
https://en.wikipedia.org/wiki/Eagle_(United_States_coin)
https://en.wikipedia.org/wiki/One_pound_(British_coin)
https://en.wikipedia.org/wiki/One_pound_(British_coin)
https://en.wikipedia.org/wiki/One_pound_(British_coin)
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33
https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33

176 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Anyway, the value of 𝜒2 statistic for mEyeColorFull is 64.76 and the probability
that such a value occurred by chance approximates 0. Therefore, it is below
our customary cutoff level of 0.05, and we may conclude that the populations
differ with respect to the distribution of eye color (as we did in Section 6.5).

Now, let’s get back for a moment to the label blindness issue. The test may be
label blind, but we are not. It is possible that sooner or later you will come
across a data set where splitting groups into different categories will lead you
to different conclusions, e.g. p-value from 𝜒2 test for mEyeColorPlSp for Poland
and Spain would be 0.054, and for mEyeColorPlSpFull it would be 0.042 (so it is
and it isn’t statistically different at the same time). What should you do then?

Well, it happens. There is not much to be done here. We need to live with
that. It is like the accused and judge analogy from Section 4.7.5. In reality
the accused is guilty or not. We don’t know the truth, the best we can do is
to examine the evidence. After that one judge may incline to declare the ac-
cused guilty the other will give him the benefit of doubt. There is no certainty
or a great solution here (at least I don’t know it). In such a case some peo-
ple suggest to present both the results with the author’s conclusions and let
the readers decide for themselves. Others suggest to collect a greater sample
to make sure which conclusion is right. Still, others suggest that you should
plan your experiment (its goals and the ways to achieve them) carefully be-
forehand. Once you got your data you stick to the plan even if the result is
disappointing to you. So, if we had decided to compare blue vs other and failed
to establish the statistical significance we ought stopped there. We should not
go fishing for statistical significance by splitting other to green and brown.

6.6 Test for independence

Another way to look at the chi squared (𝜒2) test is that this is a test that allows
to check the independence of the distribution of the data between the rows and
columns (see the assumption we made when calculating the expected counts
with probsUnderH0 in Section 6.3). Let’s make this more concrete with the fol-
lowing example.

Previously we concerned ourselves with the mEyeColorFull table.� �
mEyeColorFull� �
3×2 Matrix{Int64}:
220 161
149 78
130 242

COMPARISONS - CATEGORICAL DATA 177

17 https://en.wikipedia
.org/wiki/Melanin

The rows contain (top to bottom) eye colors: blue, green, and brown. The columns
(left to right) are for us and uk.

Interestingly enough, the eye color depends on the concentration ofmelanin17,
a pigment that is also present in skin and hair and protects us from the harm-
ful UV radiation. So imagine that the columns contain the data for some skin
condition (left column: diseaseX, right column: noDiseaseX). Now, we are in-
terested to know, if people with a certain eye color are more exposed (more
vulnerable) to the disease (if so then some preventivemeasures, e.g. a stronger
sun screen, could be applied by them).

Since this is a fictitious data set on which we only changed the column labels
then we already know the answer (see the reminder from Section 6.5 below)� �
(

round(chi2testEyeColorFull.stat, digits = 2),
round(chi2testEyeColorFull |> Ht.pvalue, digits = 7)

)� �
(64.76, 0.0)

OK, so based on the (fictitious) data there is enough evidence to consider that
the occurrence of diseaseX isn’t independent from eye color (𝑝 ≤ 0.05). In other
words, people of some eye color get diseaseXmore often than peoplewith some
other eye color. But which eye color (blue, green, brown) carries the greater risk?
Pause for a moment and think how to answer the question.

Well, one thingwe could do is to collapse some rows (if it makes sense), for in-
stance we could collapse green and brown into other category (we would end up
with two eye colors: blue and other). So in practice we would answer the same
question that we did in Section 6.3 for mEyeColor (of course here we changed
column labels to diseaseX and noDiseaseX).� �
rowPerc = [r[1] / sum(r) ∗ 100 for r in eachrow(mEyeColor)]
rowPerc = round.(rowPerc, digits = 2)

(
round(chi2testEyeColor.stat, digits = 2),
round(chi2testEyeColor |> Ht.pvalue, digits = 7),
rowPerc

)� �
(11.62, 0.0006538, [57.74, 46.58])

Wesee that roughly 57.74%of blue eyedpeople got diseaseX compared to roughly
46.58% of people with other eye color and that the difference is statistically sig-

https://en.wikipedia.org/wiki/Melanin
https://en.wikipedia.org/wiki/Melanin

178 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

nificant (𝑝 ≤ 0.05). So people with other eye color should bemore careful with
exposure to sun (of course, these are just made up data).

Another option is to use a method analogous to the one we applied in Sec-
tion 5.4 and Section 5.5. Back then we compared three groups of continuous
variables with one-way ANOVA [it controls for the overall 𝛼 (type 1 error)].
Then we used a post-hoc tests (Student’s t-tests) to figure out which group(s)
differ(s) from the other(s). Naturally, we could/should adjust the obtained
p-values by using a multiplicity correction (as we did in Section 5.6). This is
exactly what we are going to do in the upcoming exercises (see Section 6.7.5
and Section 6.7.6). For now take some rest and click the right arrow when
you’re ready.

6.7 Exercises - Comparisons of Categorical Data

Just like in the previous chapters here you will find some exercises that you
may want to solve to get from this chapter as much as you can (best option).
Alternatively, youmay read the task descriptions and the solutions (and try to
understand them).

6.7.1 Exercise 1

In Section 6.3 and Section 6.5we dealt with dfEyeColor and dfEyeColorFull, i.e. the
data sets that were already in the form of a contingency table. Usually, this is
not the case.

Imagine that you are a researcher and you want to find out if certain profes-
sions are associated with a greater risk of smoking cigarettes (perhaps as a
way to alleviate the stress). So you prepare a questionnaire. People answer
two questions: “Q1. What is your profession?” and “Q2. Do you smoke?”.
The answers to Q1 are placed in one column of a spreadsheet, the answers to
Q2 are placed into another column. An exemplary data could look this way:� �
import Random as Rand

Rand.seed!(321)
smoker = Rand.rand(["no", "yes"], 100)
profession = Rand.rand(["Lawyer", "Priest", "Teacher"], 100)� �
Write a function with the following signature� �
function getContingencyTable(

rowVect::Vector{String},
colVect::Vector{String},
)::Matrix{Int}� �

COMPARISONS - CATEGORICAL DATA 179

18 https://github.com/n
alimilan/FreqTables.jl

19 https://docs.julialang
.org/en/v1/

20 https://dataframes.jul
iadata.org/stable/

21 https://github.com/n
alimilan/FreqTables.jl

The function should take two arguments (observations as vectors of strings)
and return a contingency table (Matrix{Int})with the counts (similar to mEyeColor
↪→ or mEyeColorFull). You may modify the function slightly, e.g to return Dfs.
↪→DataFrame similar to the one produced by FreqTables.freqtable18 (it doesn’t
have to be exact).

Test your functionwith the data presented above. Make sure it works properly
also for smaller data sets, i.e.� �
Rand.seed!(321)
smokerSmall = Rand.rand(["no", "yes"], 10)
professionSmall = Rand.rand(["Lawyer", "Priest", "Teacher"], 10)� �
Here, the contingency table should contain zeros in some cells.

Below youmay find a list of functions that I found useful (youmay check them
in the docs19). Of course you don’t have to use any of them. The functions are
sorted alphabetically.

• Dfs.insertcols! (DataFrames docs20)
• collect
• getCounts (from Section 4.4)
• sort
• unique
• zip

6.7.2 Exercise 2

In Section 6.3 we concluded that the populations of the us and uk differ with
respect to eye color distribution (we used data from mEyeColor).

Still, it’s often nice to know not just the numbers themselves, but the propor-
tions (or percentage distribution of the data in a table).

So, here is a task for you. Write the following functions� �
function getColPerc(m::Matrix{Int})::Matrix{Float64}

and

function getRowPerc(m::Matrix{Int})::Matrix{Float64}� �
that shouldwork similarly to FreqTables.prop21 (prop(tbl2, margins=2), and prop
↪→(tbl2, margins=1)), i.e they should return the column and row percentage of
observations, respectively.

https://github.com/nalimilan/FreqTables.jl
https://github.com/nalimilan/FreqTables.jl
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://dataframes.juliadata.org/stable/
https://dataframes.juliadata.org/stable/
https://github.com/nalimilan/FreqTables.jl
https://github.com/nalimilan/FreqTables.jl

180 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

22 https://en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Nested_loops

23 https://docs.makie.o
rg/stable/reference/pl
ots/barplot/

To reduce code duplication you may want to combine them into a single func-
tion, e.g. getPerc(m::Matrix{Int}, byRow::Bool)::Matrix{Float64} that returns row
percentages when byRow is true, and column percentages otherwise. You my
also want to round the numbers (percents) to e.g. 2 decimal points.

In my solution I used nested for loops22, but feel free to write it whatever way
you like (as long as it works fine).

6.7.3 Exercise 3

The functions we developed previously (see Section 6.8.2) are nice and useful.
Still, we might want to have a visual aid to help us with the interpretation of
our data.

So here is another task for you. Using CairoMakie or your favorite plotting
library write a function that accepts a data frame like dfEyeColorFull and draws
a stacked bar plot depicting column percentages (search the documentation
for barplot23).

You may use the functions we developed before.

If youwant, you canmake your function also draw rowpercentages (optional).

6.7.4 Exercise 4

This exercise is pretty easy and straightforward. In Section 6.4 we said that the
chi squared (𝜒2) test requires the table to fulfill a few assumptions, e.g.:

• total number of observations to be >= 50
• the expected number of observations per a cell to be >= 5

So here is the task. Write a function with the following signature� �
runCategTestGetPVal(m::Matrix{Int})::Float64
or
runCategTestGetPVal(df::Dfs.DataFrame)::Float64� �
The function takes a 2x2matrix (like mEyeColor or mEyeColorSmall) or a data frame
(like dfEyeColor). Then the function tests the above mentioned assumptions
and runs Ht.ChisqTest or Ht.FisherExactTest on its input and returns the obtained
p-value. Feel free to use the functionalities we developed in this chapter (Sec-
tion 6) and its sub-chapters.

https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://docs.makie.org/stable/reference/plots/barplot/
https://docs.makie.org/stable/reference/plots/barplot/
https://docs.makie.org/stable/reference/plots/barplot/

COMPARISONS - CATEGORICAL DATA 181

6.7.5 Exercise 5

In Section 6.6 we analyzed the data in dfEyeColorFull (alternatively mEyeColorFull
↪→) and concluded that the distribution of eye color between the two tested
countries differed. Still, we were unable to tell which (two eye colors) distri-
butions differ from each other.

So here is the task. Write a function that accepts a matrix (or a data frame
if you will) like mEyeColor/dfEyeColorFull (where the number of rows and/or
columns with counts is greater than 2). The function should return a vector of
all possible 2x2matrices/data frames (I found getUniquePairs from Section 5.8.4
to be useful here, but you may use whatever you want).

Once you got the data structure with the data frames write another function
that runs the appropriate test (runCategTestGetPVal from Section 6.7.4 above) on
each of the matrices/data frames from the previous paragraph and return the
p-values (choose the appropriate data structure).

In the last step write a function that applies a multiplicity correction (see Sec-
tion 5.6) to the obtained p-values.

6.7.6 Exercise 6

Too cool down let’s end this chapter with something easy but potentially use-
ful.

As you have learned by now in programming we often end up using our old
functions (or at least I do), although we tend to tweak them a little to adjust
them to the ever changing needs.

In this task I want you to change the drawColPerc from Section 6.8.3 (or your
own solution to Section 6.7.3). You can name the new function, e.g. drawColPerc2
(wow, how original). The new function should accept among others a bigger
data frame (like dfEyeColorFull). Inside it runs runCategTestsGetPVals we devel-
oped in Section 6.8.5 (with multiplicity correction). Then it should draw the
stacked barplots (it draws one stacked barplot for each data frame, the draw-
ings should be set in one column, but in multiple rows, so a graph under a
graph). If the distribution in a data frame is statistically significant add a stroke
(strokewidth argument) to the barplot.

6.8 Solutions - Comparisons of Categorical Data

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

182 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

6.8.1 Solution to Exercise 1

An exemplary getContingencyTable could look like this (here, a version that pro-
duces output that resembles the result of FreqTables.freqtable):� �
function getContingencyTable(

rowVect::Vector{String},
colVect::Vector{String},
rowLabel::String,
colLabel::String,
)::Dfs.DataFrame

rowNames::Vector{String} = sort(unique(rowVect))
colNames::Vector{String} = sort(unique(colVect))
pairs::Vector{Tuple{String, String}} = collect(zip(rowVect, colVect))
pairsCounts::Dict{Tuple{String, String}, Int} = getCounts(pairs)
labels::String = "↓" ∗ rowLabel ∗ "/" ∗ colLabel ∗ "→"
df::Dfs.DataFrame = Dfs.DataFrame()
columns::Dict{String, Vector{Int}} = Dict()

for cn in colNames
columns[cn] = [get(pairsCounts, (rn, cn), 0) for rn in rowNames]

end

df = Dfs.DataFrame(columns)
Dfs.insertcols!(df, 1, labels => rowNames)

return df
end� �
Here, as we often do, we start by declaring some of the helpful variables.
rowNames and colNames contain all the possible unique groups for each input vari-
able (rowVect and colVect). Then we get all the consecutive pairings that are in
the data by using zip and collect functions. For instance collect(zip(["a", "a
↪→", "b"], ["x", "y", "x"])) will yield us the following vector of tuples: [("a
↪→", "x"), ("a", "y"), ("b", "x")]. The pairs are then sent to getCounts (from
Section 4.4) to find out how often a given pair occurs.

In the next step we define a variable df (for now it is empty) to hold our final
result. We saw in Section 6.3 that a data frame can be created by sending a
dictionary to the Dfs.DataFrame function. Therefore, we declare columns (a dic-
tionary) that will hold the count for every column of our contingency table.

We fill the columns one by one with for cn in colNames loop. To get a count for
a particular row of a given column ((rn, cn)) we use get function that extracts
it from pairsCounts. If the key is not there (a given combination of (rn, cn) does
not exist) we return 0 as a default value. We fill columns by using comprehen-
sions (see Section 3.6.3).

COMPARISONS - CATEGORICAL DATA 183

Finally, we put our counts (columns) into the data frame (df). Now, we insert a
columnwith rowNames at position 1 (first column from left) with Dfs.insertcols!.

All that it is left to do is to return the result.

Let’s find out how our getContingencyTable works.� �
smokersByProfession = getContingencyTable(

smoker,
profession,
"smoker",
"profession"

)� �
Table 6.2: Number of
smokers by profession
(fictitious data).

↓smoker/profession→ Lawyer Priest Teacher

no 14 11 18
yes 17 20 20

It appears to work just fine. Let’s swap the inputs and see if we get a consistent
result.� �
smokersByProfessionTransposed = getContingencyTable(

profession,
smoker,
"profession",
"smoker"

)� �
Table 6.3: Number of
smokers by profession
transposed (fictitious
data).

↓profession/smoker→ no yes

Lawyer 14 17
Priest 11 20

Teacher 18 20

Looks good. And now for the small data set with possible zeros.� �
smokersByProfessionSmall = getContingencyTable(

smokerSmall,
professionSmall,
"smoker",
"profession"

)� �

184 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

24 https://en.wikibooks
.org/wiki/Introducing_
Julia/Controlling_the_fl
ow#Nested_loops

Table 6.4: Number of
smokers by profes-
sion (small data set,
fictitious data).

↓smoker/profession→ Lawyer Priest Teacher

no 2 3 1
yes 0 1 3

Seems to be OK as well. Of course we can use this function with a data frame,
e.g. getContingencyTable(df[!, "col1"], df[!, "col2"], "col1", "col2") or adopt it
slightly to take a data frame as an input.

6.8.2 Solution to Exercise 2

OK, the most direct solution to the problem (for getColPerc) would be some-
thing like� �
function getColPerc(m::Matrix{Int})::Matrix{Float64}

nRows, nCols = size(m)
percentages:: Matrix{Float64} = zeros(nRows, nCols)
for c in 1:nCols

for r in 1:nRows
percentages[r, c] = m[r, c] / sum(m[:, c])
percentages[r, c] = round(percentages[r, c] ∗ 100, digits = 2)

end
end
return percentages

end� �
Here, we begin by extracting the number of rows (nRows) and columns (nCols
↪→). We use them right away by defining percentages matrix that will hold our
final result (for now it is filled with 0s). Then we use the classical nested for
loops24 idiom to calculate the percentage for every cell in the matrix/table (we
use array indexing we met in Section 3.3.7). For that we divide each count (m[
↪→r, c]) by column sum (sum(m[:, c])). Next, we multiply it by 100 (∗ 100) to
change the decimal to percentage. We round the percentage to two decimal
points (round and digits = 2).

The algorithm is not super efficient (we calculate sum(m[:, c]) separately for ev-
ery cell) or terse (9 lines of code). Still, it is pretty clear and for small matrices
(a few/several rows/cols, that we expect in our input) does the trick.

OK, let’s move to the getRowPerc function.� �
function getRowPerc(m::Matrix{Int})::Matrix{Float64}

nRows, nCols = size(m)
percentages:: Matrix{Float64} = zeros(nRows, nCols)
for c in 1:nCols

for r in 1:nRows

https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_loops

COMPARISONS - CATEGORICAL DATA 185

percentages[r, c] = m[r, c] / sum(m[r, :])
percentages[r, c] = round(percentages[r, c] ∗ 100, digits = 2)

end
end
return percentages

end� �
Hmm, it’s almost identical to getColPerc (sum(m[:, c]) was replaced with sum(m[
↪→r, :])). Let’s remove the code duplication and put it into a single function.� �
function getPerc(m::Matrix{Int}, byRow::Bool)::Matrix{Float64}

nRows, nCols = size(m)
percentages:: Matrix{Float64} = zeros(nRows, nCols)
dimSum::Int = 0 # sum in a given dimension of a matrix
for c in 1:nCols

for r in 1:nRows
dimSum = (byRow ? sum(m[r, :]) : sum(m[:, c]))
percentages[r, c] = m[r, c] / dimSum
percentages[r, c] = round(percentages[r, c] ∗ 100, digits = 2)

end
end
return percentages

end� �
Here, we replaced the function specific sums with a more general dimSum (ini-
tialized with 0). Then inside the inner for loop we decide which sum to com-
pute (row sum with sum(m[r, :]) and column sum with sum(m[:, c])) with a
ternary expression from Section 3.5.2. OK, enough of tweaking and code op-
timization, let’s test our new function.� �
mEyeColor� �
2×2 Matrix{Int64}:
220 161
279 320

And now column percentages� �
eyeColorColPerc = getPerc(mEyeColor, false)
eyeColorColPerc� �
2×2 Matrix{Float64}:
44.09 33.47
55.91 66.53

186 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

So, based on the data in mEyeColor we see that in the uk (first column) there is
roughly 44.09% of people with blue eyes. Whereas in the us (second column)
there is roughly 33.47% of people with that eye color.

And now for the row percentages.� �
eyeColorRowPerc = getPerc(mEyeColor, true)
eyeColorRowPerc� �
2×2 Matrix{Float64}:
57.74 42.26
46.58 53.42

So, based on the data in mEyeColor we see that among the investigated groups
roughly 57.74% of blue eyed people live in the uk and 42.26% of blue eyed peo-
ple live in the us.

OK, let’s just quickly make sure our function also works fine for a bigger table.� �
mEyeColorFull� �
3×2 Matrix{Int64}:
220 161
149 78
130 242

And now column percentages.� �
eyeColorColPercFull = getPerc(mEyeColorFull, false)
eyeColorColPercFull� �
3×2 Matrix{Float64}:
44.09 33.47
29.86 16.22
26.05 50.31

So, based on the data in mEyeColor we see that in the uk (first column) there is
roughly:

• 44.09% of people with blue eyes,
• 29.86% of people with green eyes, and
• 26.05% of people with brown eyes.

For us (second column) we got:

COMPARISONS - CATEGORICAL DATA 187

25 https://en.wikipedia
.org/wiki/Eye_color

26 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch06

27 https://docs.julialang
.org/en/v1/manual/fu
nctions/#Keyword-Arg
uments

• 33.47% of people with blue eyes,
• 16.22% of people with green eyes, and
• 50.31% of people with brown eyes.

Of course, remember that this is all fictitious data inspired by the lecture of
this Wikipedia’s page25.

OK, enough for the task solution. If you want to see a more terse (and myste-
rious) version of getPerc then go to this chapter’s code snippets26.

6.8.3 Solution to Exercise 3

OK, the most straightforward way to draw a stacked bar plot would be to use
Cmk.barplot with stack and color keyword arguments27.

The solution below is slightly different. It allows for greater control over the
output and it was created after some try and error.� �
import CairoMakie as Cmk

function drawColPerc(df::Dfs.DataFrame,
dfColLabel::String,
dfRowLabel::String,
title::String,
dfRowColors::Vector{String})::Cmk.Figure

m::Matrix{Int} = Matrix{Int}(df[:, 2:end])
columnPerc::Matrix{Float64} = getPerc(m, false)
nRows, nCols = size(columnPerc)
colNames::Vector{String} = names(df)[2:end]
rowNames::Vector{String} = df[1:end, 1]
xs::Vector{Int} = collect(1:nCols)
offsets::Vector{Float64} = zeros(nCols)
curPerc::Vector{Float64} = []
barplots = []

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title=title, xlabel=dfColLabel, ylabel="% of data",
xticks=(xs, colNames), yticks=0:10:100)

for r in 1:nRows
curPerc = columnPerc[r, :]
push!(barplots,

Cmk.barplot!(ax1, xs, curPerc,
offset=offsets, color=dfRowColors[r]))

offsets = offsets .+ curPerc
end

https://en.wikipedia.org/wiki/Eye_color
https://en.wikipedia.org/wiki/Eye_color
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments

188 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

28 https://juliagraphics.
github.io/Colors.jl/stab
le/namedcolors/
29 https://docs.julialang
.org/en/v1/base/collec
tions/#Base.push!

Cmk.Legend(fig[1, 2], barplots, rowNames, dfRowLabel)

return fig
end� �
We begin by defining a few helpful variables. Most of them are pretty self ex-
planatory and rely on the constructs we met before. The three most enigmatic
are offsets, curPerc, and barplots.

offsets are the locations on Y-axis where the bottom edges of the bars will be
drawn (it is initializedwith zeros). curPercwill contain heights of the bars to be
drawn. barplots will contain a vector of bar plot objects drawn (it is necessary
for adding proper legend with Cmk.Legend). For each row in columnPerc (for r in
↪→ 1:nRows) we take the percentage of the row and put it into curPerc. Then we
draw bars (Cmk.barplot!) of that height that start (their bottom edges) at offsets
and are of a color of our choosing (dfRowColors[r]). The list of allowed named
colors can be found here28. We append the drawn bars to the bars vector by
using push!29 function (we met it in Section 3.4.4). Then we add curPerc to the
offset so that the bottom edges of the next bars will start where the top edges
of the previous bars ended.

Once the for loop ended we finish by adding the appropriate legend.

OK, time to test our function� �
drawColPerc(dfEyeColorFull, "Country", "Eye color",

"Eye Color distribution by country (column percentages)",
["lightblue1", "seagreen3", "peachpuff3"])� �

I don’t know about you but to me it looks pretty nice.

OK, nowwe couldwrite drawRowPerc function bymodifying our drawColPerc slightly.
Finally, after some try and errorwe couldwrite drawPerc function that combines
both those functionalities and reduces code duplication. Without further ado
let me fast forward to the definition of drawPerc� �
function drawPerc(df::Dfs.DataFrame, byRow::Bool,

dfColLabel::String,
dfRowLabel::String,
title::String,
groupColors::Vector{String})::Cmk.Figure

m::Matrix{Int} = Matrix{Int}(df[:, 2:end])
dimPerc::Matrix{Float64} = getPerc(m, byRow)
nRows, nCols = size(dimPerc)
colNames::Vector{String} = names(df)[2:end]
rowNames::Vector{String} = df[1:end, 1]

https://juliagraphics.github.io/Colors.jl/stable/namedcolors/
https://juliagraphics.github.io/Colors.jl/stable/namedcolors/
https://juliagraphics.github.io/Colors.jl/stable/namedcolors/
https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!
https://docs.julialang.org/en/v1/base/collections/#Base.push!

COMPARISONS - CATEGORICAL DATA 189

Figure 6.1: Eye color
distribution by country
(column percentages,
fictitious data).

ylabel::String = "% of data"
xlabel::String = (byRow ? dfRowLabel : dfColLabel)
xs::Vector{Int} = collect(1:nCols)
yticks::Tuple{Vector{Int},Vector{String}} = (

collect(0:10:100), map(string, 0:10:100)
)
xticks::Tuple{Vector{Int},Vector{String}} = (xs, colNames)

if byRow
nRows, nCols = nCols, nRows
xs = collect(1:nCols)
colNames, rowNames = rowNames, colNames
dfColLabel, dfRowLabel = dfRowLabel, dfColLabel
xlabel, ylabel = ylabel, xlabel
yticks, xticks = (xs, colNames), yticks

end

offsets::Vector{Float64} = zeros(nCols)
curPerc::Vector{Float64} = []
barplots = []

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1], title=title,

xlabel=xlabel, ylabel=ylabel,
xticks=xticks, yticks=yticks)

190 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

for r in 1:nRows
curPerc = (byRow ? dimPerc[:, r] : dimPerc[r, :])
push!(barplots,

Cmk.barplot!(ax1, xs, curPerc,
offset=offsets, color=groupColors[r],
direction=(byRow ? :x : :y)))

offsets = offsets .+ curPerc
end
Cmk.Legend(fig[1, 2], barplots, rowNames, dfRowLabel)

return fig
end� �
Ok, let’s see how it works.� �
drawPerc(dfEyeColorFull, true,

"Country", "Eye color",
"Eye Color distribution by country (row percentages)",
["red", "blue"])� �

Figure 6.2: Eye color
distribution by country
(row percentages,
fictitious data).

Pretty, pretty, pretty.

I leave the code in drawPerc for you to decipher. Let me just explain a few new
pieces.

COMPARISONS - CATEGORICAL DATA 191

30 https://docs.julialang
.org/en/v1/base/base
/#Core.Symbol

In Julia (like in Python) we can define two variables in one go by using the
following syntax: a, b = 1, 2 (now a = 1 and b = 2). Let’s say that later in our
program we decided that from now on a should be 2, and b should be 1. We
can swap the variables using the following one line expression: a, b = b, a.

Additionally, drawPerc makes use of the direction keyword argument that ac-
cepts symbols30 :x or :y. It made the output slightly more visually pleasing
but also marginally complicated the code. Anyway, direction = :y draws ver-
tical bars (see Figure 6.1), whereas direction = :x draws horizontal bars (see
Figure 6.2).

And that’s it for this exercise.

6.8.4 Solution to Exercise 4

OK, let’s start by defining helper functions that we will use to test the assump-
tions.� �
function isSumAboveCutoff(m::Matrix{Int}, cutoff::Int = 49)::Bool

return sum(m) > cutoff
end

function getExpectedCounts(m::Matrix{Int})::Vector{Float64}
nObs::Int = sum(m)
cProbs::Vector{Float64} = [sum(c) / nObs for c in eachcol(m)]
rProbs::Vector{Float64} = [sum(r) / nObs for r in eachrow(m)]
probsUnderH0::Vector{Float64} = [

cp ∗ rp for cp in cProbs for rp in rProbs
]

return probsUnderH0 .∗ nObs
end

function areAllExpectedCountsAboveCutoff(
m::Matrix{Int}, cutoff::Float64 = 5.0)::Bool
expectedCounts::Vector{Float64} = getExpectedCounts(m)
return map(x −> x >= cutoff, expectedCounts) |> all

end

function areChiSq2AssumptionsOK(m::Matrix{Int})::Bool
sumGTEQ50::Bool = isSumAboveCutoff(m)
allExpValsGTEQ5::Bool = areAllExpectedCountsAboveCutoff(m)
return sumGTEQ50 && allExpValsGTEQ5

end� �
There is not much to explain here, since all we did was to gather the function-
ality we had developed in the previous chapters (e.g. in Section 6.3).

And now for the tests.

https://docs.julialang.org/en/v1/base/base/#Core.Symbol
https://docs.julialang.org/en/v1/base/base/#Core.Symbol
https://docs.julialang.org/en/v1/base/base/#Core.Symbol

192 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

� �
function runFisherExactTestGetPVal(m::Matrix{Int})::Float64

@assert (size(m) == (2, 2)) "input matrix must be of size (2, 2)"
a, c, b, d = m
return Ht.FisherExactTest(a, b, c, d) |> Ht.pvalue

end

function runCategTestGetPVal(m::Matrix{Int})::Float64
@assert (size(m) == (2, 2)) "input matrix must be of size (2, 2)"
if areChiSq2AssumptionsOK(m)

return Ht.ChisqTest(m) |> Ht.pvalue
else

return runFisherExactTestGetPVal(m)
end

end

function runCategTestGetPVal(df::Dfs.DataFrame)::Float64
@assert (size(df) == (2, 3)) "input df must be of size (2, 3)"
return runCategTestGetPVal(Matrix{Int}(df[:, 2:3]))

end� �
Again, all we did herewas to collect the proper functionalitywe haddeveloped
in this chapter (Section 6) and its sub-chapters. Therefore, I’ll refrain myself
from comments. Instead let’s test our newly developed tools.� �
round.(

[
runCategTestGetPVal(mEyeColor),
runCategTestGetPVal(mEyeColorSmall),
runCategTestGetPVal(dfEyeColor)

],
digits = 4

)� �
[0.0007, 0.6373, 0.0007]

The functions appear to be working as intended, and the obtained p-values
match those from Section 6.3 and Section 6.4.

6.8.5 Solution to Exercise 5

Let’s start by writing a function that will accept a data frame like dfEyeColorFull
↪→ and return all the possible 2x2 data frames (2 rows and 2 columns with
counts).� �
previously (ch05) defined function
function getUniquePairs(names::Vector{T})::Vector{Tuple{T,T}} where T

COMPARISONS - CATEGORICAL DATA 193

@assert (length(names) >= 2) "the input must be of length >= 2"
uniquePairs::Vector{Tuple{T,T}} =

Vector{Tuple{T,T}}(undef, binomial(length(names), 2))
currInd::Int = 1
for i in eachindex(names)[1:(end−1)]

for j in eachindex(names)[(i+1):end]
uniquePairs[currInd] = (names[i], names[j])
currInd += 1

end
end
return uniquePairs

end

function get2x2Dfs(biggerDf::Dfs.DataFrame)::Vector{Dfs.DataFrame}
nRows, nCols = size(biggerDf)
@assert ((nRows > 2) || (nCols > 3)) "matrix of counts must be > 2x2"
rPairs::Vector{Tuple{Int, Int}} = getUniquePairs(collect(1:nRows))
counts start from column 2
cPairs::Vector{Tuple{Int, Int}} = getUniquePairs(collect(2:nCols))
return [

biggerDf[[r...], [1, c...]] for r in rPairs for c in cPairs
]

end� �
We begin by copying and pasting getUniquePairs from Section 5.8.4. We will
use it in get2x2Dfs. First we get unique pairs of rows (rPairs). Then we get
unique pairs of columns (cPairs). Finally, using nested comprehension and
indexing (for reminder see Section 3.3.7 and Section 5.3.1) we get the vector
of all possible 2x2 data frames (actually 2x3 data frames, because first column
contains row labels). Since each element of rPairs (r) or cPairs (c) is a tuple,
and indexing must be a vector, then we convert one into the other using [r...]
and [c...] syntax (e.g. [(1, 2)...] will give us [1, 2]). In the end we get the
list of data frames as a result.

OK, let’s write a function to compute p-values (for now unadjusted) for data
frames in a vector.� �
function runCategTestsGetPVals(

biggerDf::Dfs.DataFrame
)::Tuple{Vector{Dfs.DataFrame}, Vector{Float64}}

overallPVal::Float64 = Ht.ChisqTest(
Matrix{Int}(biggerDf[:, 2:end])) |> Ht.pvalue

if (overallPVal <= 0.05)
dfs::Vector{Dfs.DataFrame} = get2x2Dfs(biggerDf)
pvals::Vector{Float64} = runCategTestGetPVal.(dfs)
return (dfs, pvals)

else
return ([biggerDf], [overallPVal])

194 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

end
end� �
The function is rather simple. First, it checks the overall p-value (overallPVal
↪→) for the biggerDf. If it is less than or equal to our customary cutoff level
(𝛼 = 0.05) then we execute runCategTestGetPVal on each possible data frame
(dfs) using the dot operator syntax from Section 3.6.5. We return a tuple, its
first element is a vector of data frames, its second element is a vector of corre-
sponding (uncorrected) p-values. If overallPVal is greater than the cutoff level
thenwe place our biggerDf and its corresponding p-value (overallPVal) into vec-
tors, and place them into a tuple (which is returned).

Time to test our function.� �
resultCategTests = runCategTestsGetPVals(dfEyeColorFull)
resultCategTests[1]� �

eyeCol uk us

blue 220 161
green 149 78

eyeCol uk us

blue 220 161
brown 130 242

eyeCol uk us

green 149 78
brown 130 242

Looking good, and now the corresponding unadjusted p-values.� �
resultCategTests[2]� �
[0.05384721765961758, 3.5949791158435336e−10, 2.761179458504292e−13]

Once we got it, adjusting the p-values should be a breeze.� �
import MultipleTesting as Mt

function adjustPVals(
multCategTestsResults::Tuple{Vector{Dfs.DataFrame}, Vector{Float64}},
multCorr::Type{<:Mt.PValueAdjustment}

COMPARISONS - CATEGORICAL DATA 195

)::Tuple{Vector{Dfs.DataFrame}, Vector{Float64}}
dfs, pvals = multCategTestsResults
adjPVals::Vector{Float64} = Mt.adjust(pvals, multCorr())
return (dfs, adjPVals)

end� �
Yep. All we did here, was to extract the vector of p-values (pvals) and send
it as an argument to Mt.adjust for correction. Let’s see how it works (since we
are using the Bonferroni method then we expect the adjusted p-values to be 3x
greater than the unadjusted ones, see Section 5.6).� �
resultAdjustedCategTests = adjustPVals(resultCategTests, Mt.Bonferroni)
resultAdjustedCategTests[2]� �
[0.16154165297885273, 1.07849373475306e−9, 8.283538375512876e−13]

OK, it appears to be working just fine.

6.8.6 Solution to Exercise 6

OK, let’s look at an exemplary solution.� �
function drawColPerc2(

biggerDf::Dfs.DataFrame,
dfColLabel::String,
dfRowLabel::String,
title::String,
dfRowColors::Dict{String,String},
alpha::Float64=0.05,
adjMethod::Type{<:Mt.PValueAdjustment}=Mt.Bonferroni)::Cmk.Figure

multCategTests::Tuple{
Vector{Dfs.DataFrame},
Vector{Float64}} = runCategTestsGetPVals(biggerDf)

multCategTests = adjustPVals(multCategTests, adjMethod)
dfs, pvals = multCategTests

fig = Cmk.Figure(size=(800, 400 ∗ length(dfs)))

for i in eachindex(dfs)
m::Matrix{Int} = Matrix{Int}(dfs[i][:, 2:end])
columnPerc::Matrix{Float64} = getPerc(m, false)
nRows, nCols = size(columnPerc)
colNames::Vector{String} = names(dfs[i])[2:end]
rowNames::Vector{String} = dfs[i][1:end, 1]
xs::Vector{Int} = collect(1:nCols)
offsets::Vector{Float64} = zeros(nCols)

196 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

curPerc::Vector{Float64} = []
barplots = []

ax = Cmk.Axis(fig[i, 1],
title=title, xlabel=dfColLabel, ylabel="% of data",
xticks=(xs, colNames), yticks=0:10:100)

for r in 1:nRows
curPerc = columnPerc[r, :]
push!(barplots,

Cmk.barplot!(ax, xs, curPerc,
offset=offsets,
color=get(dfRowColors, rowNames[r], "black"),
strokewidth=(pvals[i] <= alpha) ? 2 : 0))

offsets = offsets .+ curPerc
end
Cmk.Legend(fig[i, 2], barplots, rowNames, dfRowLabel)

end

return fig
end� �
The function definition differs slightly from the original drawColPerc. Of note
we changed the colors parameter from Vector{String} to Dict{String, String} (a
mapping between row name in column 1 and color by which it will be rep-
resented on the graph). Of course, we added two more parameters alpha and
adjMethod.

First, we run multiple categorical tests (runCategTestsGetPVals) and adjust the
obtainedp-values (adjustPVals) using functionality developed earlier (Section 6.8.5).
Thenwe, define the figure objectwith a desired size (size=(widthPixels, heightPixels
↪→)) adjusted by number of subplots in the figure (∗ length(dfs)).

The next step is pretty simple, basically we enclose the previously developed
code from drawColPerc in a for loop (for i in eachindex(dfs)) that draws consec-
utive data frames as a stacked bar plots in a separate rows of the figure. If a
statistically significant difference for a data frame was detected (pvals[i] <=
↪→alpha) we add a stroke (strokewidth) to the bar plot.

Time to see how it works.� �
drawColPerc2(dfEyeColorFull, "Country", "Eye color", "Eye color by country",

Dict("blue" => "lightblue1",
"green" => "seagreen3",
"brown" => "peachpuff3"))� �

It looks quite OK+ it allows us to quickly judge which eye colors distributions

COMPARISONS - CATEGORICAL DATA 197

Figure 6.3: Eye color
distribution by country
(column percentages,
fictitious data). Stroke
denotes statistically
significant difference (p
≤ 0.05).

198 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

31 https://docs.makie.o
rg/stable/tutorials/layo
ut-tutorial/

differ one from another. For a more complicated layout we should probably
follow the guidelines contained in the Layout Tutorial31.

https://docs.makie.org/stable/tutorials/layout-tutorial/
https://docs.makie.org/stable/tutorials/layout-tutorial/
https://docs.makie.org/stable/tutorials/layout-tutorial/

1 https://docs.julialang
.org/en/v1/stdlib/Pkg/

2 https://github.com/b
-lukaszuk/RJ_BS_eng/
tree/main/code_snipp
ets/ch07
3 https://pkgdocs.julial
ang.org/v1/environme
nts/

4 https://en.wikipedia.o
rg/wiki/Amazon_rainf
orest

7 Association and Prediction

OK, time to talk about association between two variables and how to predict
the value of one variable based on the value(s) of other variable(s).

7.1 Chapter imports

Later in this chapter we are going to use the following libraries� �
import CairoMakie as Cmk
import CSV as Csv
import DataFrames as Dfs
import Distributions as Dsts
import GLM as Glm
import MultipleTesting as Mt
import Random as Rand
import RDatasets as RD
import Statistics as Stats� �
If you want to follow along you should have them installed on your system. A
reminder of how to deal (install and such) with packages can be found here1.
But wait, you may prefer to use Project.toml and Manifest.toml files from the
code snippets for this chapter2 to install the required packages. The instruc-
tions you will find here3.

The imports will be placed in the code snippet when first used, but I thought
it is a good idea to put them here, after all imports should be at the top of your
file (so here they are at the top of the chapter). Moreover, that way they will
be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of unknown func-
tionality, just go to the code snippets mentioned above and run the code from
the ∗.jl file. Once you have done that you can always extract a small piece of
it and test it separately (modify and experiment with it if you wish).

7.2 Linear relation

Imagine you are a biologist that conducts their research in theAmazon rainfor-
est4 known for biodiversity and heavy rainfalls (see the name). You divided

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch07
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch07
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch07
https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch07
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://pkgdocs.julialang.org/v1/environments/
https://en.wikipedia.org/wiki/Amazon_rainforest
https://en.wikipedia.org/wiki/Amazon_rainforest
https://en.wikipedia.org/wiki/Amazon_rainforest

200 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

the area into 20 equal size fields on which you measured the volume of rain
(per a unit of time) and biomass of two plants (named creatively plantA and
plantB). The results are contained in biomass.csv file, let’s take a sneak peak at
them.� �
import CSV as Csv
import DataFrames as Dfs

if you are in 'code_snippets' folder, then use: "./ch07/biomass.csv"
if you are in 'ch07' folder, then use: "./biomass.csv"
biomass = Csv.read("./code_snippets/ch07/biomass.csv", Dfs.DataFrame)
first(biomass, 5)� �

Table 7.1: Effect of
rainfall on plants
biomass (fictitious
data).

plantAkg rainL plantBkg

20.26 15.09 21.76
9.18 5.32 6.08

11.36 12.5 10.96
11.26 10.7 4.96
9.05 5.7 9.55

I think some plot would be helpful to get a better picture of the data (pun
intended).� �
import CairoMakie as Cmk

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="Effect of rainfall on biomass of plant A",
xlabel="water [L]", ylabel="biomass [kg]")

Cmk.scatter!(ax1, biomass.rainL, biomass.plantAkg,
markersize=25, color="skyblue",
strokewidth=1, strokecolor="gray")

ax2 = Cmk.Axis(fig[1, 2],
title="Effect of rainfall on biomass of plant B",
xlabel="water [L]", ylabel="biomass [kg]")

Cmk.scatter!(ax2, biomass.rainL, biomass.plantBkg,
markersize=25, color="linen",
strokewidth=1, strokecolor="black")

Cmk.linkxaxes!(ax1, ax2)
Cmk.linkyaxes!(ax1, ax2)
fig� �
Overall, it looks like the biomass of both plants is directly related (one in-
creases and the other increases) with the volume of rain. That seems reason-
able. Moreover, we can see that the points are spread along an imaginary line
(go ahead imagine it) that goes through all the points on a graph. We can also

ASSOCIATION AND PREDICTION 201

Figure 7.1: Effect of
rainfall on a plant’s
biomass.

5 https://en.wikipedia.o
rg/wiki/Covariance

6 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/#Statistics.cov

see that plantB has a somewhat greater spread of points (which may indicate
smaller dependency onwater). It would be nice to be able to express such a re-
lation between two variables (here biomass and volume of rain) with a single
number. It turns out that we can. That’s the job for covariance5.

7.3 Covariance

The formula for covariance resembles the one for variance that we met in Sec-
tion 4.6 (getVar function) only that it is calculated for pairs of values (here a
plant biomass and rainfall for a field), so two vectors instead of one. Observe� �
import Statistics as Stats

function getCov(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
@assert length(v1) == length(v2) "v1 and v2 must be of equal lengths"
avg1::Float64 = Stats.mean(v1)
avg2::Float64 = Stats.mean(v2)
diffs1::Vector{<:Real} = v1 .− avg1
diffs2::Vector{<:Real} = v2 .− avg2
return sum(diffs1 .∗ diffs2) / (length(v1) − 1)

end� �
Note: To calculate the covariance you may also use Statistics.cov6.

https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Covariance
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cov
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cov
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cov

202 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

A few points of notice. In Section 4.6 in getVarwe squared the differences (diffs
↪→), i.e. we multiplied the diffs by themselves (𝑥 ∗ 𝑥 = 𝑥2). Here, we do
something similar by multiplying parallel values from both vectors of diffs
(diffs1 and diffs2) by each other (𝑥 ∗ 𝑦, for a given field). Moreover, instead of
taking the average (so sum(diffs1 .∗ diffs2)/length(v1)) here we use the more
fine tuned statistical formula that relies on the degrees of freedom we met in
Section 5.2 (there we used getDf function on a vector, here we kind of use getDf
on the number of fields that are represented by the points in the Figure 27).

Enough explanations, let’s see how it works. First, a few possible associations
that roughly take the following shapes on a graph: /, \, |, and −.� �
rowLenBiomass, _ = size(biomass)

(
assuming: getCov(xs, ys),
you may test the distributions with: Cmk.scatter(xs, ys)
getCov(biomass.rainL, biomass.plantAkg), # /
getCov(collect(1:1:rowLenBiomass), collect(rowLenBiomass:−1:1)), # \
getCov(repeat([5], rowLenBiomass), biomass.plantAkg), # |
getCov(biomass.rainL, repeat([5], rowLenBiomass)) # −

)� �
(8.721824210526316, −35.0, 0.0, 0.0)

We can see that whenever both variables (on X- and on Y-axis) increase si-
multaneously (points lie alongside / imaginary line like in Figure 27) then
the covariance is positive. If one variable increases whereas the other de-
creases (points lie alongside \ imaginary line) then the covariance is negative.
Whereas in the case when one variable changes and the other is stable (points
lie alongside | or − line) the covariance is equal zero.

OK, time to compare the both plants.� �
covPlantA = getCov(biomass.plantAkg, biomass.rainL)
covPlantB = getCov(biomass.plantBkg, biomass.rainL)

(
covPlantA,
covPlantB,

)� �
(8.721824210526316, 9.527113684210526)

In Section 4.6 greater variance (and standard deviation) meant greater spread
of points around the mean, here the greater covariance expresses the greater

ASSOCIATION AND PREDICTION 203

7 https://en.wikipedia.o
rg/wiki/Correlation

spread of the points around the imaginary trend line (in Figure 27). But be-
ware, you shouldn’t judge the spread of data based on the covariance alone.
To understand why let’s look at the graph below.

Figure 7.2: Effect of
rainfall on plants’
biomass.

Here, we got the biomass of plantA in different units (kilograms and pounds).
Logic and visual inspection of the points spread on the graph suggest that the
covariances should be the same. Or maybe not?� �
(

getCov(biomass.plantAkg, biomass.rainL),
getCov(biomass.plantAkg .∗ 2.205, biomass.rainL),

)� �
(8.721824210526316, 19.231622384210525)

The covariances suggest that the spread of the data points is like 2 times greater
between the two sub-graphs in Figure 7.2, but that is clearly not the case. The
problem is that the covariance is easily inflated by the units of measurements.
That is why we got an improved metrics for association named correlation7.

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation

204 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

8 https://en.wikipedia.o
rg/wiki/Pearson_correl
ation_coefficient

9 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/#Statistics.cor

7.4 Correlation

Correlation is most frequently expressed in the term of the Pearson correlation
coefficient8 that by itself relies on covariance we met in the previous section.
Its formula is pretty straightforward� �
calculates the Pearson correlation coefficient
function getCor(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64

return getCov(v1, v2) / (Stats.std(v1) ∗ Stats.std(v2))
end� �
getCor (generic function with 1 method)

Note: To calculate the Pearson correlation coefficient you may also use Statis-
tics.cor9.

The correlation coefficient is just the covariance (numerator) divided by the
product of two standard deviations (denominator). The lowest absolute value
(abs(getCov(v1, v2))) possible for covariance is 0. Themaximum absolute value
possible for covariance is equal to Stats.std(v1) ∗ Stats.std(v2). Therefore, the
correlation coefficient (often abbreviated as r) takes values from 0 to 1 for pos-
itive covariance and from 0 to -1 for negative covariance. The more tightly our
points lie on an imaginary trend line the greater is abs(corCoef).

Let’s see how it works.� �
biomassCors = (

getCor(biomass.plantAkg, biomass.rainL),
getCor(biomass.plantAkg .∗ 2.205, biomass.rainL), # pounds
getCor(biomass.plantBkg, biomass.rainL),
getCor(biomass.plantBkg .∗ 2.205, biomass.rainL), # pounds

)
round.(biomassCors, digits = 2)� �
(0.78, 0.78, 0.53, 0.53)

Clearly, the new and improved coefficient is more useful than the old one (co-
variance). Large spread of points along the imaginary line in Figure 27 yields
small correlation coefficient (closer to 0). Small spread of points on the other
hand results in a high correlation coefficient (closer to -1 or 1). So, nowwe can
be fairly sure of the greater strength of association between plantA and rainfall
than plantB and the condition.

Importantly, the correlation coefficient depends not only on the scatter of points
along an imaginary line, but also on the slope of the line. Observe:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor

ASSOCIATION AND PREDICTION 205

� �
import Random as Rand

Rand.seed!(321)

jitter = Rand.rand(−0.2:0.01:0.2, 10)
z1 = collect(1:10)
z2 = repeat([5], 10)
(

getCor(z1 .+ jitter, z1), # / imaginary line
getCor(z1, z2 .+ jitter) # − imaginary line

)� �
(0.9992378634323702, −0.3215268421510342)

Feel free to draw side by side scatter plots for the example above (remember
to link the axes). In the code snippet above the spread of data points along
the imaginary line is the same in both cases. Yet, the correlation coefficient
is much smaller in the second case. This is because of the covariance that is
present in the getCor function (in numerator). The covariance is greater when
the points change together is a given direction. The change is smaller and
non-systematic in the second case, hence the lower correlation coefficient. You
may want to keep that in mind as it will become handy once we talk about
correlation pitfalls in Section 7.5.

Anyway, the interpretation of the correlation coefficient differs depending on
a textbook and a field of science, but in biology it is approximated by those
cutoffs:

• abs(r) = [0 - 0.2) - very weak correlation
• abs(r) = [0.2 - 0.4) - weak correlation
• abs(r) = [0.4 - 0.6) - moderate correlation
• abs(r) = [0.6 - 0.8) - strong correlation
• abs(r) = [0.8 - 1] - very strong correlation

Note: The Pearson’s correlation coefficient is often abbreviated as r. Whereas,]
and) signify closed and open interval, respectively. So, x in range [0, 1] means
0 <= x <= 1, whereas x in range [0, 1) means 0 <= x < 1.

In general, if x and y are correlated then this maymean one of a few things, the
most obvious of which are:

• x is a cause, y is an effect

206 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

10 https://en.wikipedia
.org/wiki/Pearson_corr
elation_coefficient#Test
ing_using_Student\Xe
TeXglyph\numexpr\X
eTeXcharglyph”0027\re
lax{}s_t-distribution

• y is a cause, x is an effect
• changes in x and y are caused by an unknown third factor(s)
• x and y are not related but it just happened that in the sample they appear

to be related by chance alone (in a small sample drawn from a population
they appear to be associated, but in the population they are not).

We can protect ourselves (to a certain extent) against the last contingencywith
our good old Student’s T-test (see Section 5.2). As stated in the Wikipedia’s
page10:

[…] Pearson’s correlation coefficient follows Student’s t-distributionwith degrees
of freedom n − 2. Specifically, if the underlying variables have a bivariate normal
distribution the variable
𝑡 = 𝑟

𝜎𝑟
= 𝑟 ∗ √ 𝑛−2

1−𝑟2

has a student’s t-distribution in the null case (zero correlation)

Let’s put that knowledge to good use:� �
calculates the Pearson correlation coefficient and pvalue
assumption (not tested in the function): v1 & v2 got normal distributions
function getCorAndPval(

v1::Vector{<:Real}, v2::Vector{<:Real})::Tuple{Float64, Float64}
r::Float64 = Stats.cor(v1, v2) # or: getCor(v1, v2)
n::Int = length(v1) # num of points
df::Int = n − 2
t::Float64 = r ∗ sqrt(df / (1 − r^2)) # t−statistics
leftTail::Float64 = Dsts.cdf(Dsts.TDist(df), t)
pval::Float64 = (t > 0) ? (1 − leftTail) : leftTail
return (r, pval ∗ 2) # (∗ 2) two−tailed probability

end� �
getCorAndPval (generic function with 1 method)

The function is just a translation of the formula given above + some calcula-
tions similar to those we did in Section 5.2 to get the p-value. And now for our
correlations.� �
biomassCorsPvals = (

getCorAndPval(biomass.plantAkg, biomass.rainL),
getCorAndPval(biomass.plantAkg .∗ 2.205, biomass.rainL), # pounds
getCorAndPval(biomass.plantBkg, biomass.rainL),
getCorAndPval(biomass.plantBkg .∗ 2.205, biomass.rainL), # pounds

)
biomassCorsPvals� �

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_t-distribution

ASSOCIATION AND PREDICTION 207

11 https://en.wikipedia
.org/wiki/Anscombe
%27s_quartet

12 https://github.com/J
uliaStats/RDatasets.jl
13 https://en.wikipedia
.org/wiki/R_(progra
mming_language)

((0.7820227869193526, 4.635013786202791e−5),
(0.7820227869193522, 4.635013786202791e−5),
(0.526545847035062, 0.017073389709765907),
(0.5265458470350619, 0.017073389709765907))

We can see that both correlation coefficients are unlikely to have occurred by
chance alone (𝑝 ≤ 0.05). Therefore, we can conclude that in each case the
biomass is associated with the amount of water a plant receives. I don’t know
a formal test to compare two correlation coefficients, but based on the rs alone
it appears that the biomass of plantA is more tightly related to (or maybe even
it relies more on) the amount of water than the other plant (plantB).

7.5 Correlation Pitfalls

The Pearson correlation coefficient is pretty useful (especially in connection
with the Student’s t-test), but it shouldn’t be applied thoughtlessly.

Let’s take a look at the Anscombe’s quartet11.� �
import RDatasets as RD

anscombe = RD.dataset("datasets", "anscombe")
first(anscombe, 5)� �

Table 7.2: DataFrame
for Anscombe’s quartet

X1 X2 X3 X4 Y1 Y2 Y3 Y4

10.0 10.0 10.0 8.0 8.04 9.14 7.46 6.58
8.0 8.0 8.0 8.0 6.95 8.14 6.77 5.76

13.0 13.0 13.0 8.0 7.58 8.74 12.74 7.71
9.0 9.0 9.0 8.0 8.81 8.77 7.11 8.84

11.0 11.0 11.0 8.0 8.33 9.26 7.81 8.47

The data frame is a part of RDatasets12 that contains a collection of standard
data sets used with the R programming language13. The data frame was care-
fully designed to demonstrate the perils of relying blindly on correlation coef-
ficients.� �
fig = Cmk.Figure()
i = 0
for r in 1:2 # r − row

for c in 1:2 # c − column
i += 1
xname = string("X", i)
yname = string("Y", i)

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://github.com/JuliaStats/RDatasets.jl
https://github.com/JuliaStats/RDatasets.jl
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)

208 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

xs = anscombe[:, xname]
ys = anscombe[:, yname]
cor, pval = getCorAndPval(xs, ys)
ax = Cmk.Axis(fig[r, c],

title=string("Figure ", "ABCD"[i]),
xlabel=xname, ylabel=yname,
limits=(0, 20, 0, 15))

Cmk.scatter!(ax, xs, ys)
Cmk.text!(ax, 9, 3, text="cor(x, y) = $(round(cor, digits=2))")
Cmk.text!(ax, 9, 1, text="p−val = $(round(pval, digits=4))")

end
end

fig� �
There’s not much to explain here. The only new part is string function that
converts its elements to strings (if they aren’t already) and glues them together
into a one long string. The rest is just plain drawing with CairoMakie. Still, take
a look at the picture below

Figure 7.3: Anscombe’s
Quartet.

All the sub-figures from Figure 7.3 depict different relation types between the
X and Y variables, yet the correlations and p-values are the same. Two points
of notice here. In Figure B the points lie in a perfect order on a curve. So, in
a perfect word the correlation coefficient should be equal to 1. Yet it is not, as
it only measures the spread of the points around an imaginary straight line.

ASSOCIATION AND PREDICTION 209

14 https://en.wikipedia
.org/wiki/Outlier

15 https://en.wikipedia
.org/wiki/All_models
_are_wrong

Moreover, correlation is sensitive to outliers14. In Figure D the X and Y vari-
ables appear not to be associated at all (for X= 8, Y can take any value). Again,
in the perfect world the correlation coefficient should be equal to 0. Still, the
outlier on the far right (that in real life may have occurred by a typographical
error) pumps it up to 0.82 (or what we could call a very strong correlation).
Lesson to be learned here, don’t trust the numbers, and whenever you can
draw a scatter plot to double check them. And remember, “All models are
wrong, but some are useful”15.

Other pitfalls are also possible. For instance, imagine you measured body and
tail length of a certain species of mouse, here are your results.� �
if you are in 'code_snippets' folder, then use: "./ch07/miceLengths.csv"
if you are in 'ch07' folder, then use: "./miceLengths.csv"
miceLengths = Csv.read(

"./code_snippets/ch07/miceLengths.csv",
Dfs.DataFrame)

first(miceLengths, 5)� �
Table 7.3: Body lengths
of a certain mouse
species (fictitious data).

bodyCm tailCm sex

11.3 2.55 f
11.18 2.22 f
9.42 2.54 f
9.21 2.2 f
9.97 2.63 f

You are interested to know if the tail length is associated with the body length
of the animals.� �
getCorAndPval(miceLengths.bodyCm, miceLengths.tailCm)� �
(0.8899347709623199, 1.5005298337200657e−7)

Clearly it is and even very strongly. Or is it? Well, let’s take a look

It turns out that we have two clusters of points. In both of them the points
seem to be randomly scattered. This could be confirmed by testing correlation
coefficients for the clusters separately.� �
isFemale(value) = value == "f"
isMale(value) = value == "m"

fml − female mice lengths
mml − male mice lengths
fml = miceLengths[isFemale.(miceLengths.sex), :] # choose only females

https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

210 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 7.4: Mice body
length vs. tail length.

16 https://en.wikibooks
.org/wiki/Introducing_
Julia/Functions#Single
_expression_functions

17 https://dataframes.jul
iadata.org/stable/lib/fu
nctions/#DataFrames.
groupby
18 https://dataframes.jul
iadata.org/stable/lib/fu
nctions/#DataFrames.
combine

mml = miceLengths[isMale.(miceLengths.sex), :] # choose only males

(
getCorAndPval(fml.bodyCm, fml.tailCm),
getCorAndPval(mml.bodyCm, mml.tailCm)

)� �
((−0.1593819718041706, 0.6821046994037891),
(−0.02632446813765734, 0.9387606491398499))

Note: The above code snippet uses a single expression functions16 in the form
functionName(argument) = returnedValue and Boolean indexing (isFemale.(miceLengths
↪→.sex) and isMale.(miceLengths.sex)) thatwas discussed briefly in Section 3.3.6
and Section 3.3.7.

Alternatively, you could read the documentation for the functionality built into
DataFrames.jl to obtain the desired insight. Doing so takes time, effort, and
causes irritation at first (trust me, I know). Still, there are no shortcuts to any
placeworth going. So, youmaydecide to useDfs.groupby17 andDfs.combine18
to get a similar result.� �
gDf − grouped data frame
Dfs.groupby(miceLengths, :sex) |>

https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Single_expression_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Single_expression_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Single_expression_functions
https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Single_expression_functions
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.groupby
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.groupby
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.groupby
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.groupby
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.combine
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.combine
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.combine
https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.combine

ASSOCIATION AND PREDICTION 211

19 https://github.com/b
kamins/Julia-DataFra
mes-Tutorial/

gDf −> Dfs.combine(gDf, [:tailCm, :bodyCm] => Stats.cor => :r)� �
Table 7.4: Pearson
correlation coefficients
for miceLengths data
frame.

sex r

f -0.1593819718041706
m -0.02632446813765729

Note: You could replace Stats.cor with getCorAndPval in the snippet above. This
should work if you changed the signature of the function from getCorAndPval(v1
↪→::Vector{<:Real}, v2::Vector{<:Real}) to getCorAndPval(v1::AbstractVector{<:
↪→Real}, v2::Abstractvector{<:Real}) first. A more comprehensive DataFrames
tutorial can be found, e.g. here19 (if you don’t knowwhat to do with ∗.ipynb files
then you may just click on any of them to see its content in a web browser).

Anyway, the Pearson correlation coefficients are small and not statistically sig-
nificant (p > 0.05). But since the two clusters of points lie on the opposite
corners of the graph, then the overall correlation measures their spread along-
side the imaginary dashed line in Figure 7.4. This inflates the value of the
coefficient (compare with the explanation for z1, z2 and jitter in Section 7.4).
Therefore, it is always good to inspect a graph (scatter plot) to see if there
are any clusters of points. The clusters are usually a result of some grouping
present in the data (either different experimental groups/treatments or due
to some natural grouping). Sometimes we may be unaware of the groups in
our data set. Still, if we do know about them, then it is a good idea to inspect
the overall correlation and the correlation coefficient for each of the groups
separately.

As the last example let’s take a look at this data frame.� �
if you are in 'code_snippets' folder, then use: "./ch07/candyBars.csv"
if you are in 'ch07' folder, then use: "./candyBars.csv"
candyBars = Csv.read(

"./code_snippets/ch07/candyBars.csv",
Dfs.DataFrame)

first(candyBars, 5)� �
Table 7.5: Candy
bar composition [g]
(fictitious data).

total carb fat

44.49 30.23 9.67
48.39 29.31 12.48
49.83 30.95 10.58
40.51 25.22 9.89
44.51 29.45 10.15

https://github.com/bkamins/Julia-DataFrames-Tutorial/
https://github.com/bkamins/Julia-DataFrames-Tutorial/
https://github.com/bkamins/Julia-DataFrames-Tutorial/

212 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Here, we got a data set on composition of different chocolate bars. You are
interested to see if the carbohydrate (carb) content in bars is associated with
their fat mass.� �
getCorAndPval(candyBars.carb, candyBars.fat)� �
(0.12176486958519653, 0.7375535843598793)

And it appears it is not. OK, no big deal, and what about carb and total mass
of a candy bar?� �
getCorAndPval(candyBars.carb, candyBars.total)� �
(0.822779226943004, 0.0034638410860259317)

Now we got it. It’s big (r > 0.8) and it’s real (𝑝 ≤ 0.05). But did it really make
sense to test that?

If we got a random variable aa then it is going to be perfectly correlated with
itself.� �
Rand.seed!(321)
aa = Rand.rand(Dsts.Normal(100, 15), 10)

getCorAndPval(aa, aa)� �
(1.0, 0.0)

On the other hand it shouldn’t be correlated with another random variable bb.� �
bb = Rand.rand(Dsts.Normal(100, 15), 10)

getCorAndPval(aa, bb)� �
(0.19399997195558746, 0.5912393958185727)

Now, if we add the two variables together we will get the total (cc), that will
be correlated with both aa and bb.� �
cc = aa .+ bb

(
getCorAndPval(aa, cc),
getCorAndPval(bb, cc)

)� �

ASSOCIATION AND PREDICTION 213

20 https://en.wikipedia
.org/wiki/Simple_linea
r_regression

((0.7813386818990972, 0.007608814877251513),
(0.763829856046036, 0.010120085355359132))

This is because while correlating aa with cc we are partially correlating aa with
itself (aa .+ bb). In general, the greater portion of cc our aa makes the greater
the correlation coefficient. So, although possible, it makes little logical sense
to compare a part of something with its total. Therefore, in reality running
getCorAndPval(candyBars.carb, candyBars.total) makes no point despite the inter-
esting result it seems to produce.

7.6 Simple Linear Regression

Webegan Section 7.2 with describing the relation between the volume ofwater
and biomass of two plants of amazon rain forest. Let’s revisit the problem.� �
biomass
first(biomass, 5)� �

Table 7.6: Effect of
rainfall on plants
biomass (fictitious
data).

plantAkg rainL plantBkg

20.26 15.09 21.76
9.18 5.32 6.08

11.36 12.5 10.96
11.26 10.7 4.96
9.05 5.7 9.55

Previously, we said that the points are scattered around an imaginary line that
goes through their center. Now, we could draw that line at a rough guess using
a pen and a piece of paper (or a graphics editor). Based on the line we could
make a prediction of the values on Y-axis based on the values on the X-axis.
The variable placed on the X-axis is called independent (the rain does not de-
pend on a plant, it falls or not), predictor or explanatory variable. The variable
placed on the Y-axis is called dependent (the plant depends on rain) or out-
come variable. The problem with drawing the line by hand is that it wouldn’t
be reproducible, a line drawn by the same person would differ slightly from
draw to draw. The same is true if a few different people have undertaken this
task. Luckily, we got the simple linear regression20, a method that allows us to
draw the same line every single time based on a simple mathematical formula
that takes the form:

𝑦 = 𝑎 + 𝑏 ∗ 𝑥, where:

• y - predicted value of y

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression

214 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 7.5: Effect of
rainfall on plants’
biomass. Revisited.

• a - intercept (a point on Y-axis where the imaginary line crosses it at x = 0)
• b - slope (a value by which y increases/decreases when x changes by one

unit)
• x - the value of x for which we want to estimate/predict the value of y

The slope (b) is fairly easy to calculate with Julia� �
function getSlope(xs::Vector{<:Real}, ys::Vector{<:Real})::Float64

avgXs::Float64 = Stats.mean(xs)
avgYs::Float64 = Stats.mean(ys)
diffsXs::Vector{<:Real} = xs .− avgXs
diffsYs::Vector{<:Real} = ys .− avgYs
return sum(diffsXs .∗ diffsYs) / sum(diffsXs .^ 2)

end� �
getSlope (generic function with 1 method)

The function resembles the formula for the covariance that we met in Sec-
tion 7.3. The difference is that there we divided sum(diffs1 .∗ diffs2) (here we
called it sum(diffsXs .∗ diffsYs)) by the degrees of freedom (length(v1) − 1) and
herewe divide it by sum(diffsXs .^ 2). Wemight not have come upwith the for-
mula ourselves, still, it makes sense given that we are looking for the value by
which y changes when x changes by one unit.

ASSOCIATION AND PREDICTION 215

Once we got it, we may proceed to calculate the intercept (a) like so� �
function getIntercept(xs::Vector{<:Real}, ys::Vector{<:Real})::Float64

return Stats.mean(ys) − getSlope(xs, ys) ∗ Stats.mean(xs)
end� �
getIntercept (generic function with 1 method)

And now the results.� �
be careful, unlike in getCor or getCov, here the order of variables
in parameters influences the result
plantAIntercept = getIntercept(biomass.rainL, biomass.plantAkg)
plantASlope = getSlope(biomass.rainL, biomass.plantAkg)
plantBIntercept = getIntercept(biomass.rainL, biomass.plantBkg)
plantBSlope = getSlope(biomass.rainL, biomass.plantBkg)

round.([plantASlope, plantBSlope], digits = 2)� �
[1.04, 1.14]

The intercepts are not our primary interest (we will explain why in a moment
or two). We are more concerned with the slopes. Based on the slopes we
can say that on average each additional liter or water (rainL) translates into
1.04 [kg] more biomass for plantA and 1.14 [kg] more biomass for plantB. Al-
though, based on the correlation coefficients from Section 7.4 we know that
the estimate for plantB is less precise. This is because the smaller correlation
coefficient means a greater spread of the points along the line as can be seen
in the figure below.� �
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

title="Effect of rainfall on biomass of plant A",
xlabel="water [L]", ylabel="biomass [kg]")

Cmk.scatter!(ax1, biomass.rainL, biomass.plantAkg,
markersize=25, color="skyblue",
strokewidth=1, strokecolor="gray")

ax2 = Cmk.Axis(fig[1, 2],
title="Effect of rainfall on biomass of plant B",
xlabel="water [L]", ylabel="biomass [kg]")

Cmk.scatter!(ax2, biomass.rainL, biomass.plantBkg,
markersize=25, color="linen",
strokewidth=1, strokecolor="black")

Cmk.ablines!(ax1, plantAIntercept, plantASlope,
linestyle=:dash, color="gray")

Cmk.ablines!(ax2, plantBIntercept, plantBSlope,
linestyle=:dash, color="gray")

216 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Cmk.linkxaxes!(ax1, ax2)
Cmk.linkyaxes!(ax1, ax2)
fig� �

Figure 7.6: Effect of
rainfall on plants’
biomass with trend
lines superimposed.

The trend line is placedmore or less where we would have placed it at a rough
guess, so it seems we got our functions right.

Now we can either use the graph (Figure 7.6) and read the expected value of
the variable on the Y-axis based on a value on the X-axis (using a dashed line).
Alternatively, we can write a formula based on 𝑦 = 𝑎 + 𝑏 ∗ 𝑥 we mentioned
before to get that estimate.� �
function getPrecictedY(

x::Float64, intercept::Float64, slope::Float64)::Float64
return intercept + slope ∗ x

end

round.(
getPrecictedY.([6.0, 10, 12], plantAIntercept, plantASlope),
digits = 2)� �

[8.4, 12.57, 14.65]

ASSOCIATION AND PREDICTION 217

21 https://en.wikipedia
.org/wiki/Botanical_ga
rden

22 https://en.wikipedia
.org/wiki/All_models
_are_wrong

23 https://en.wikipedia
.org/wiki/Spirometry

24 https://en.wikipedia
.org/wiki/Vital_capaci
ty

It appears to work as expected (to confirm it read from Figure 7.6 values on
Y-axis for the following values on X-axis: [6.0, 10, 12] using the dashed line for
plantA).

OK, and now imagine you intend to introduce plantA into a botanic garden21

and you want it to grow well and fast. The function getPrecictedY tells us that
if you pour 35 [L] of water to a field with plantA then on average you should
get 42 [kg] of the biomass. Unfortunately after you applied the treatment it
turned out the biomass actually dropped to 10 [kg] from the field. What hap-
pened? Reality. Most likely you (almost) drowned your plant. Lesson to be
learned here. It is unsafe to use a model to make predictions beyond the data
range on which it was trained. Ultimately, “All models are wrong, but some
are useful”22.

The above is the reason why in most cases we aren’t interested in the value of
the intercept. The intercept is the value on the Y-axis when X is equal to 0, it
is necessary for our model to work, but most likely it isn’t very informative (in
our case a plant that receives no water simply dies).

So what is regression good for if it only enables us to make a prediction within
the range on which it was trained? Well, if you ever underwent spirometry23

then you used regression in practice (or at least benefited from it). The func-
tional examination of the respiratory system goes as follows. First, you enter
your data: name, sex, height, weight, age, etc. Then you breathe (in a manner
recommended by a technician) through a mouthpiece connected to an ana-
lyzer. Finally, you compare your results with the ones you should have ob-
tained. If, let’s say your vital capacity24 is equal to 5.1 [L] and should be equal
to 5 [L] then it is a good sign. However, if the obtained value is equal to 4 [L]
when it should be 5 [L] (4/5 = 0.8 = 80% of the norm) then you should consult
your physician. But where does the reference value come from?

One way to get it would be to rely on a large database, of let’s say 100-200
million healthy individuals (a data frame with 100-200 million rows and 5-6
columns for age, gender, height, etc. that is stored on a hard drive). Then all
you have to do is to find a person (or people) whose data match yours exactly.
Then you can take their vital capacity (or their a mean if there is more than
one person that matches your features) as a reference point for yours. But this
would be a great burden. For once you would have to collect data for a lot of
individuals to be pretty sure that an exact combination of a given set of features
occurs (hence the 100-200millionmentioned above). The other problem is that
such a data framewould occupy a lot of disk space andwould be slow to search
through. A better solution is regression (most likelymultiple linear regression
that we will cover in Section 7.7). In that case you collect a smaller sample
of let’s say 10’000 healthy individuals. You train your regression model. And
store it togetherwith the getPrecictedY function (where Y could be the discussed

https://en.wikipedia.org/wiki/Botanical_garden
https://en.wikipedia.org/wiki/Botanical_garden
https://en.wikipedia.org/wiki/Botanical_garden
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/Spirometry
https://en.wikipedia.org/wiki/Spirometry
https://en.wikipedia.org/wiki/Vital_capacity
https://en.wikipedia.org/wiki/Vital_capacity
https://en.wikipedia.org/wiki/Vital_capacity

218 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

25 https://juliastats.org
/GLM.jl/stable/

vital capacity). Now, you can easily and quickly calculate the reference value
for a patient even if the exact set of features (values of predictor variables) was
not in your training data set (still, you can be fairly sure that the values of the
features of the patient are in the range of the training data set).

Anyway, in real life whenever you want to fit a regression line in Julia you
should probably use GLM.jl25 package. In our case an exemplary output for
plantA looks as follows.� �
import GLM as Glm

mod1 = Glm.lm(Glm.@formula(plantAkg ~ rainL), biomass)
mod1� �
plantAkg ~ 1 + rainL

Coefficients:
──

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
──
(Intercept) 2.14751 2.04177 1.05 0.3068 −2.14208 6.43711
rainL 1.04218 0.195771 5.32 <1e−04 0.630877 1.45347
──

We begin with Glm.lm(formula, dataFrame) (lm stands for linear model). Next, we
specify our relationship (Glm.@formula) in the form Y ~ X, where Y is the depen-
dent (outcome) variable, ~ is explained by, and X is the independent (explana-
tory) variable. This fits our model (mod1) to the data and yields quite some
output.

The Coef. column contains the values of the intercept (previously estimated
with getIntercept) and slope (before we used getSlope for that). It is followed
by the Std. Error of the estimation (similar to the sem from Section 5.2). Then,
just like in the case of the correlation (Section 7.4), some clever mathematical
tweaking allows us to obtain a t-statistic for the Coef.s and p-values for them.
The p-values tell us if the coefficients are really different from 0 (𝐻0: a Coeff.
↪→ is equal to 0) or estimate the probability that such a big value (or bigger)
happened by chance alone (assuming that 𝐻0 is true). Finally, we end up
with 95% confidence interval (similar to the one discussed in Section 5.2.1)
that (oversimplifying stuff) tells us, with a degree of certainty, within what
limits the true value of the coefficient in the population is.

We can use GLM to make our predictions as well.� �
round.(

Glm.predict(mod1, Dfs.DataFrame(Dict("rainL" => [6, 10, 12]))),

https://juliastats.org/GLM.jl/stable/
https://juliastats.org/GLM.jl/stable/

ASSOCIATION AND PREDICTION 219

26 https://en.wikipedia
.org/wiki/Coefficient_
of_determination

digits = 2
)� �
[8.4, 12.57, 14.65]

For that to work we feed Glm.predict with our model (mod1) and a DataFrame con-
taining a column rainL that was used as a predictor in our model and voila, the
results match those returned by getPrecictedY somewhat before in this section.

We can also get the general impression of how imprecise our prediction is by
using the residuals (differences between the predicted and actual value on the
Y-axis). Like so� �
an average estimation error in prediction
(based on abs differences)
function getAvgEstimError(

lm::Glm.StatsModels.TableRegressionModel)::Float64
return abs.(Glm.residuals(lm)) |> Stats.mean

end

getAvgEstimError(mod1)� �
2.075254994044967

So, on average our model miscalculates the value on the Y-axis (plantAkg) by 2
units (here kilograms). Of course, this is a slightly optimistic view, since we
expect that on a new, previously unseen data set, the prediction error will be
greater.

Moreover, the package allows us to calculate other useful stuff, like the coef-
ficient of determination26 that tells us how much change in the variability on
Y-axis is explained by our model (our explanatory variable(s)).� �
(

Glm.r2(mod1),
Stats.cor(biomass.rainL, biomass.plantAkg) ^ 2

)� �
(0.6115596392611107, 0.6115596392611111)

The coefficient of determination is called 𝑟2 (r squared) and in this case (simple
linear regression) it is equal to the Pearson’s correlation coefficient (denoted
as r) times itself. As we can see our model explains roughly 61% of variability
in plantAkg biomass.

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination

220 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

27 https://vincentarelb
undock.github.io/Rda
tasets/doc/Ecdat/Icecr
eam.html

7.7 Multiple Linear Regression

Multiple linear regression is a linear regression with more than one predictor
variable. Take a look at the Icecream27 data frame.� �
ice = RD.dataset("Ecdat", "Icecream")
first(ice, 5)� �

Table 7.7: Icecream
consumption data.

Cons Income Price Temp

0.386 78.0 0.27 41.0
0.374 79.0 0.282 56.0
0.393 81.0 0.277 63.0
0.425 80.0 0.28 68.0
0.406 76.0 0.272 69.0

We got 4 columns altogether (more detail in the link above):

• Cons - consumption of ice cream (pints),
• Income - average family income (USD),
• Price - price of ice cream (USD),
• Temp - temperature (Fahrenheit)

Imagine you are an ice cream truck owner and are interested to know which
factors influence (and in what way) the consumption (Cons) of ice-cream by
your customers. Let’s start by building a model with all the possible explana-
tory variables.� �
iceMod1 = Glm.lm(Glm.@formula(Cons ~ Income + Price + Temp), ice)
iceMod1� �
───

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
───
(Intercept) 0.1973 0.2702 0.73 0.4718 −0.3581 0.7528
Income 0.0033 0.0012 2.82 0.0090 0.0009 0.0057
Price −1.0444 0.8344 −1.25 0.2218 −2.7595 0.6706
Temp 0.0035 0.0004 7.76 <1e−99 0.0025 0.0044
───

Right away we can see that the price of ice-cream negatively affects (Coef. =
-1.044) the volume of ice cream consumed (the more expensive the ice cream
is the less people eat it, 1.044 pint less for every additional USD of price). The

https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html

ASSOCIATION AND PREDICTION 221

relationship is in line with our intuition. However, there is not enough evi-
dence (p > 0.05) that the real influence of Price on consumption isn’t 0 (so no
influence). Therefore, you wonder should you perhaps remove the variable
Price from the model like so� �
iceMod2 = Glm.lm(Glm.@formula(Cons ~ Income + Temp), ice)
iceMod2� �
───

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
───
(Intercept) −0.1132 0.1083 −1.05 0.3051 −0.3354 0.109
Income 0.0035 0.0012 3.02 0.0055 0.0011 0.0059
Temp 0.0035 0.0004 7.96 <1e−99 0.0026 0.0045
───

Now, we got Income and Temp in our model, both of which are statistically sig-
nificant. The values of Coef.s for Income and Temp somewhat changed between
the models, but such changes (and even greater) are to be expected. Still, we
would like to know if our new iceMod2 is really better than iceMod1 that we came
up with before.

In our first try to solve the problem we could resort to the coefficient of deter-
mination (𝑟2) that we met in Section 7.6. Intuition tells us that a better model
should have a bigger 𝑟2.� �
round.([Glm.r2(iceMod1), Glm.r2(iceMod2)],

digits = 3)� �
[0.719, 0.702]

Hmm, 𝑟2 is bigger for iceMod1 than iceMod2. However, there are two problems
with it: 1) the difference between the coefficients is quite small, and 2) 𝑟2 gets
easily inflated by any additional variable in the model. And I mean any, if you
add, let’s say 10 random variables to the ice data frame and put them into a
model the coefficient of determination will go up even though this makes no
sense (we know their real influence is 0). That is why we got an improved
metrics called the adjusted coefficient of determination. This parameter (adj.
𝑟2) penalizes for every additional variable added to our model. Therefore the
‘noise’ variables will lower the adjusted 𝑟2 whereas only truly impactful ones
will be able to raise it.� �
round.([Glm.adjr2(iceMod1), Glm.adjr2(iceMod2)],

digits = 3)� �

222 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

28 https://en.wikipedia
.org/wiki/Occam%27s_
razor

[0.687, 0.68]

iceMod1 still explains more variability in Cons (ice cream consumption), but the
magnitude of the difference dropped. This makes our decision even harder.
Luckily, Glm has ftest function to help us determine if onemodel is significantly
better than the other.� �
Glm.ftest(iceMod1.model, iceMod2.model)� �
F−test: 2 models fitted on 30 observations
───

DOF ΔDOF SSR ΔSSR R² ΔR² F∗ p(>F)
───
[1] 5 0.0353 0.7190
[2] 4 −1 0.0374 0.0021 0.7021 −0.0169 1.5669 0.2218
───

The table contains two rows:

• [1] - first model from the left (in Glm.ftest argument list)
• [2] - second model from the left (in Glm.ftest argument list)

and a few columns:

• DOF - degrees of freedom (more elements in formula, bigger DOF)
• ΔDOF - DOF[2] - DOF[1]
• SSR - residual sum of squares (the smaller the better)
• ΔSSR - SSR[2] - SSR[1]
• R2 - coefficient of determination (the bigger the better)
• ΔR2 - R2[2] - R2[1]
• F∗ - F-Statistic (similar to the one we met in Section 5.4)
• p(>F) - p-value that you obtain F-statistic greater than the one in the previous

column by chance alone (assuming both models are equally good)

Based on the test we see that none of the models is clearly better than the
other (p > 0.05). Therefore, in line with Occam’s razor28 principle (when two
equally good explanations exist, choose the simpler one) we can safely pick
iceMod2 as our final model.

What we did here was the construction of a so called minimal adequate model
(the smallestmodel that explains the greatest amount of variance in the depen-
dent/outcomevariable). Wedid this using top to bottomapproach. We started

https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Occam%27s_razor

ASSOCIATION AND PREDICTION 223

29 https://en.wikipedia
.org/wiki/Standardized
_coefficient

with a ‘full’ model. Then, we followed by removing explanatory variables (one
by one) that do not contribute to the model (we start from the highest p-value
above 0.05) until only meaningful explanatory variables remain. The removal
of the variables reflects our common sense, because usually we (or others that
will use our model) do not want to spend time/money/energy on collecting
data that are of no use to us.

OK, let’s inspect our minimal adequate model again.� �
iceMod2� �
───

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
───
(Intercept) −0.1132 0.1083 −1.05 0.3051 −0.3354 0.109
Income 0.0035 0.0012 3.02 0.0055 0.0011 0.0059
Temp 0.0035 0.0004 7.96 <1e−99 0.0026 0.0045
───

We can see that for every extra dollar of Income our customers consume 0.003
pint (~1.47 mL) of ice cream more. Roughly the same change is produced by
each additional grade (in Fahrenheit) of temperature. So, a simultaneous in-
crease in Income by 1USD and Temp by 1 unit translates into roughly 0.003+ 0.003
= 0.006 pint (~2.94 mL) greater consumption of ice cream per person. Now,
(remember you were to imagine you are an ice cream truck owner) you could
use the model to make predictions (with Glm.predict as we did in Section 7.6)
to your benefit (e.g. by preparing enough product for your customers on a hot
day).

So the time passes by and one sunny day when you open a bottle of beer a
drunk genie pops out of it. To compensate you for the lost beer he offers to
fulfill one wish (shouldn’t there be three?). He won’t shower you with cash
right away since you will not be able to explain it to the tax office. Instead, he
will give you the ability to control either Income or Temp variable at will. That
way youwill get your money and none is the wiser. Which one do you choose,
answer quickly, before the genie changes his mind.

Hmm, now that’s a dilemma, but judging by the coefficients above it seems it
doesn’t make much of a difference (both Coef.s are roughly equal to 0.0035).
Or does it? Well, the Coef.s are similar, but we are comparing incomparable,
i.e. dollars (Income) with degrees Fahrenheit (Temp) and their influence on Cons.
We may however, standardize the coefficients29 to overcome the problem.� �
fn from ch04
how many std. devs is a value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64

https://en.wikipedia.org/wiki/Standardized_coefficient
https://en.wikipedia.org/wiki/Standardized_coefficient
https://en.wikipedia.org/wiki/Standardized_coefficient

224 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

30 https://vincentarelb
undock.github.io/Rda
tasets/doc/HSAUR/age
fat.html

return (value − mean)/sd
end

adding new columns to the data frame
ice.ConsStand = getZScore.(

ice.Cons, Stats.mean(ice.Cons), Stats.std(ice.Cons))
ice.IncomeStand = getZScore.(

ice.Income, Stats.mean(ice.Income), Stats.std(ice.Income))
ice.TempStand = getZScore.(

ice.Temp, Stats.mean(ice.Temp), Stats.std(ice.Temp))

iceMod2Stand = Glm.lm(
Glm.@formula(ConsStand ~ IncomeStand + TempStand), ice)

iceMod2Stand� �
──

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
──
(Intercept) −0.0 0.103 −0.00 1.0000 −0.212 0.212
IncomeStand 0.335 0.111 3.02 0.0060 0.107 0.563
TempStand 0.884 0.111 7.96 <1e−99 0.657 1.112
──

When expressed on the same scale (using getZScore function we met in Sec-
tion 4.6.2) it becomes clear that the Temp (Coef. ~0.884) is a much more influ-
ential factor with respect to ice cream consumption (Cons) than Income (Coef.
↪→ ~0.335). Therefore, we can be pretty sure that modifying the temperature
by 1 standard deviation (which should not attract much attention) will bring
you more money than modifying customers’ income by 1 standard deviation.
Thanks genie.

Let’s look at another example of regression to get a better feel of it and discuss
categorical variables and an interaction term in the model. We will operate on
agefat30 data frame.� �
agefat = RD.dataset("HSAUR", "agefat")� �

Table 7.8: Total body
composition.

Age Fat Sex

24 15.5 male
37 20.9 male
41 18.6 male
60 28.0 male
31 34.7 female

Here we are interested to predict body fat percentage (Fat) from the other two
variables. Let’s get down to business.

https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/agefat.html
https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/agefat.html
https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/agefat.html
https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/agefat.html

ASSOCIATION AND PREDICTION 225

31 https://en.wikipedia
.org/wiki/Body_fat_per
centage

� �
agefatM1 = Glm.lm(Glm.@formula(Fat ~ Age + Sex), agefat)
agefatM1� �
──

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
──
(Intercept) 19.6479 4.1078 4.78 0.0001 11.1288 28.1669
Age 0.2656 0.0795 3.34 0.0030 0.1006 0.4305
Sex: male −10.5489 2.0914 −5.04 <1e−99 −14.8862 −6.2116
──

It appears that the older a person is the more fat it has (+0.27% of body fat
per 1 extra year of age). Moreover, male subjects got smaller percentage of
body fat (on average by 10.5%) than female individuals (this is to be expected:
see here31). In the case of categorical variables the reference group is the one
that comes first in the alphabet (here female is before male). The internals of the
model assign 0 to the reference group and 1 to the other group. This yields us
the formula: 𝑦 = 𝑎 + 𝑏 ∗ 𝑥 + 𝑐 ∗ 𝑧 or 𝐹𝑎𝑡 = 𝑎 + 𝑏 ∗ 𝐴𝑔𝑒 + 𝑐 ∗ 𝑆𝑒𝑥, where Sex
is 0 for female and 1 for male. As before we can use this formula for prediction
(either write a new getPredictedY function on your own or use Glm.predict we
met before).

We may also want to fit a model with an interaction term (+ Age&Sex) to see if
we gain some additional precision in our predictions.� �
or shortcut: Glm.@formula(Fat ~ Age ∗ Sex)
agefatM2 = Glm.lm(Glm.@formula(Fat ~ Age + Sex + Age&Sex), agefat)
agefatM2� �
──

Coef. Std. Err. t Pr(>|t|) Low. 95% Up. 95%
──
(Intercept) 25.67 5.33 4.82 <1e−99 14.59 36.75
Age 0.14 0.11 1.36 0.1900 −0.08 0.36
Sex: male −21.76 6.96 −3.13 0.0100 −36.24 −7.28
Age & Sex: male 0.26 0.15 1.68 0.1100 −0.06 0.58
──

Here, we do not have enough evidence that the interaction term (Age & Sex:
↪→male) matters (p > 0.05). Still, let’s explain what is this interaction in case
you ever find one that is important. For that, take a look at the graph below.

As you can see the model without interaction fits two regression lines (one for
each Sex) with different intercepts, but the same slopes. On the other hand,

https://en.wikipedia.org/wiki/Body_fat_percentage
https://en.wikipedia.org/wiki/Body_fat_percentage
https://en.wikipedia.org/wiki/Body_fat_percentage

226 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 7.7: Body fat
percentage vs. Age and
Sex

the model with interaction fits two regression lines (one for each Sex) with
different intercepts and different slopes. Since the coefficient (Coef.) for the
interaction term (Age & Sex: male) is positive, this means that the slope for Sex:
↪→ male is more steep (more positive). This would suggest that males tend to
accumulate fat at a faster rate as they age.

So, when to use an interaction term in yourmodel? The advice I heardwas that
in general, you should construct simple models and only use an interaction
term when there are some good reasons for it. For instance, in the discussed
case (agefat data frame), we might wanted to answer the research question:
Does the accretion of body fat occurs faster in one of the genders as people
age?

7.8 Exercises - Association and Prediction

Just like in the previous chapters here you will find some exercises that you
may want to solve to get from this chapter as much as you can (best option).
Alternatively, youmay read the task descriptions and the solutions (and try to
understand them).

ASSOCIATION AND PREDICTION 227

32 https://vincentarelb
undock.github.io/Rda
tasets/doc/MASS/An
imals.html

7.8.1 Exercise 1

The RDatasets package mentioned in Section 7.5 contains a lot of interesting
data. For instance the Animals32 data frame.� �
animals = RD.dataset("MASS", "Animals")
first(animals, 5)� �

Table 7.9: DataFrame
for brain and body
weights of 28 animal
species.

Species Body Brain

Mountain beaver 1.35 8.1
Cow 465.0 423.0

Grey wolf 36.33 119.5
Goat 27.66 115.0

Guinea pig 1.04 5.5

Since this chapter is about association then we are interested to know if body
[kg] and brain weights [kg] of the animals are correlated. Let’s take a sneak
peak at the data points.

Figure 7.8: Body and
brain weight of 28
animal species.

Hmm, at first sight the data looks like a little mess. Most likely because of the
large range of data on X- and Y-axis. Moreover, the fact that some animals got
large bodymasswith relatively small brainweight doesn’t help either. Still, my
impression is that in general (except for the first three points from the right)

https://vincentarelbundock.github.io/Rdatasets/doc/MASS/Animals.html
https://vincentarelbundock.github.io/Rdatasets/doc/MASS/Animals.html
https://vincentarelbundock.github.io/Rdatasets/doc/MASS/Animals.html
https://vincentarelbundock.github.io/Rdatasets/doc/MASS/Animals.html

228 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

33 https://en.wikipedia
.org/wiki/Spearman%2
7s_rank_correlation_co
efficient

greater body weight is associated with a greater brain weight. However, it is
quite hard to tell for sure as the points on the left are so close to each other on
the scale of X-axis. So, let’s put that to the test.� �
getCorAndPval(animals.Body, animals.Brain)� �
(−0.005341162561251125, 0.9784802067532018)

The Pearson’s correlation coefficient is not able to discern the points and con-
firm that either. Nevertheless, let’s narrow our ranges by taking logarithms
(with log10 function) of the data and look at the scatter plot again.

Figure 7.9: Body
(log10) and brain
(log10) weight of 28
animal species.

The impression we get is quite different than before. The points are much
better separated. The three outliers remain, but they are much closer to the
imaginary trend line. Now we would like to express that relationship. One
way to do it is with Spearman’s rank correlation coefficient33. As the name
implies instead of correlating the numbers themselves it correlates their ranks.

Note: It might be a good idea to examine the three outliers and see do they have
anything in common. If so, wemight want to determine the relationship between
X- and Y- variable (even on the original, non-log10 scale) separately for the out-
liers and the remaining animals. Here, the three outliers are dinosaurs, whereas
rest of the animals are mammals. This could explain why the association is dif-
ferent in these two groups of animals.

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

ASSOCIATION AND PREDICTION 229

34 https://juliastats.org
/StatsBase.jl/stable/ran
king/#StatsBase.corspe
arman

So here is a warm up task for you.

Write a getSpearmCorAndPval function and run it on animals data frame. To do that
first you will need a function getRanks(v::Vector{<:Real})::Vector{<:Float64} that
returns the ranks for you like this.� �
getRanks([500, 100, 1000]) # returns [2.0, 1.0, 3.0]
getRanks([500, 100, 500, 1000]) # returns [2.5, 1.0, 2.5, 4.0]
getRanks([500, 100, 500, 1000, 500]) # returns [3.0, 1.0, 3.0, 5.0, 3.0]
etc.� �
Personally, I found Base.findall and Base.sort to be useful while writing getRanks
↪→, but feel free to employ whatever constructs you want. Anyway, once you
got it, you can apply it to get Spearman’s correlation coefficient (getCorAndPval
↪→(getRanks(v1), getRanks(v2))).

Note: In real life to calculate the coefficient youwouldprobably use StatsBase.corspearman34.

7.8.2 Exercise 2

P-value multiplicity correction, a classic theme in this book. Let’s revisit it
again. Take a look at the following data frame.� �
Rand.seed!(321)

letters = map(string, 'a':'j')
bogusCors = Dfs.DataFrame(

Dict(l => Rand.rand(Dsts.Normal(100, 15), 10) for l in letters)
)
bogusCors[1:3, 1:3]� �

Table 7.10: DataFrame
with random variables
for bogus correlations.

a b c

102.04452249090404 126.62114430860125 72.58784224875757
81.10997573989799 101.02869856127887 123.65904493232378
85.54321961150684 109.98477666117208 132.32635179854458

It contains a random made up data. In total we can calculate binomial(10, 2)
↪→ = 45 different unique correlations for the 10 columns we got here. Out
of them roughly 2-3 (binomial(10, 2) ∗ 0.05 = 2.25) would appear to be valid
correlations (𝑝 ≤ 0.05), but in reality were the false positives (since we know
that each column is a random variable obtained from the same distribution).
So here is a task for you. Write a function that will return all the possible

https://juliastats.org/StatsBase.jl/stable/ranking/#StatsBase.corspearman
https://juliastats.org/StatsBase.jl/stable/ranking/#StatsBase.corspearman
https://juliastats.org/StatsBase.jl/stable/ranking/#StatsBase.corspearman
https://juliastats.org/StatsBase.jl/stable/ranking/#StatsBase.corspearman

230 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

35 https://docs.makie.o
rg/stable/reference/pl
ots/heatmap/

36 https://docs.makie.o
rg/stable/explanations
/colors/

correlations (coefficients and p-values). Check how many of them are false
positives. Apply a multiplicity correction (e.g. Mt.BenjaminiHochberg() we met
in Section 5.6) to the p-values and check if the number of false positives drops
to zero.

7.8.3 Exercise 3

Sometimes we would like to have a quick visual way to depict all the correla-
tions in one plot to get a general impression of the correlations in the data (and
possible patterns present). One way to do this is to use a so called heatmap.

So, here is a task for you. Read the documentation and examples for Cairo-
Makie’s heatmap35 (or a heatmap from other plotting library) and for the data
in bogusCors from the previous section create a graph similar to the one you see
below.

Figure 7.10: Correlation
heatmap for data in
bogusCors.

The graph depicts the Pearson’s correlation coefficients for all the possible cor-
relations in bogusCors. Positive correlations are depicted as the shades of blue,
negative correlations as the shades of red.

Your figure doesn’t have to be the exact replica of mine, for instance you may
choose a different color map36.

If you like challenges you may add (write it in the center of a given square)

https://docs.makie.org/stable/reference/plots/heatmap/
https://docs.makie.org/stable/reference/plots/heatmap/
https://docs.makie.org/stable/reference/plots/heatmap/
https://docs.makie.org/stable/explanations/colors/
https://docs.makie.org/stable/explanations/colors/
https://docs.makie.org/stable/explanations/colors/

ASSOCIATION AND PREDICTION 231

37 https://en.wikipedia
.org/wiki/Regression_a
nalysis#Underlying_ass
umptions
38 https://www.rdocum
entation.org/packages/
stats/versions/3.6.2/top
ics/plot.lm
39 https://en.wikipedia
.org/wiki/Q%E2%80%
93Q_plot

the value of the correlation coefficient (rounded to let’s say 2 decimal digits).
Furthermore, you may add a significance marker (e.g. if a ‘raw’ p-value is ≤
0.05 put ‘#’ character in a square) for the correlations.

7.8.4 Exercise 4

Linear regression just like other methods mentioned in this book got its as-
sumptions37 that if possible should be verified. The R programming language
got plot.lm38 function to verify them graphically. The two most important
plots (or at least the ones that I understand the best) are scatter-plot of residu-
als vs. fitted values and Q-Q plot39 of standardized residuals (see Figure 7.11
below).

Figure 7.11: Diagnostic
plot for regression
model (ageFatM1).

If the assumptions hold, then the points in residuals vs. fitted plot should be
randomly scattered around 0 (on Y-axis) with equal spread of points from left
to right and no apparent pattern visible. On the other hand, the points in Q-Q
plot should lie along the Q-Q line which indicates their normal distribution.
To me (I’m not an expert though) the above seem to hold in Figure 7.11 above.
If that was not the case then we should try to correct our model. We might
transform one or more variables (for instance by using log10 function we met
in Section 7.8.1) or fit a different model. Otherwise, the model we got may
give poor predictions. For instance, if our residuals vs. fitted plot displayed a

https://en.wikipedia.org/wiki/Regression_analysis#Underlying_assumptions
https://en.wikipedia.org/wiki/Regression_analysis#Underlying_assumptions
https://en.wikipedia.org/wiki/Regression_analysis#Underlying_assumptions
https://en.wikipedia.org/wiki/Regression_analysis#Underlying_assumptions
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/plot.lm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/plot.lm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/plot.lm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/plot.lm
https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

232 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

40 https://juliastats.org
/StatsModels.jl/stable/f
ormula/#Constructing
-a-formula-programma
tically-1

greater spread of points on the right side of X-axis, then most likely our pre-
dictions would be more off for large values of explanatory variable(s).

Anyway, your task here is to write a function drawDiagPlot that accepts a lin-
ear regression model and returns a graph similar to Figure 7.11 above (when
called with ageFatM1 as an input).

Below you will find some (but not all) of the functions that I found useful
while solving this task (feel free to use whatever functions you want):

• Glm.predict
• Glm.residuals
• string(Glm.formula(mod))
• Cmk.qqplot

The rest is up to you.

7.8.5 Exercise 5

While developing the solution to exercise 4 (Section 7.9.4) we pointed out on
the flaws of iceMod2. We decided to develop a better model. So, here is a task
for you.

Read about constructing formula programmatically40 using StatsModels pack-
age (GLM uses it internally).

Next, given the ice2 data frame below.� �
Rand.seed!(321)

ice = RD.dataset("Ecdat", "Icecream") # reading fresh data frame
ice2 = ice[2:end, :] # copy of ice data frame
an attempt to remove autocorrelation from Temp variable
ice2.TempDiff = ice.Temp[2:end] .− ice.Temp[1:(end−1)]

dummy variables aimed to confuse our new function
ice2.a = Rand.rand(−100:1:100, 29)
ice2.b = Rand.rand(−100:1:100, 29)
ice2.c = Rand.rand(−100:1:100, 29)
ice2.d = Rand.rand(−100:1:100, 29)
ice2� �
Write a function that returns the minimal adequate model.� �
return a minimal adequate (linear) model
function getMinAdeqMod(

https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-programmatically-1
https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-programmatically-1
https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-programmatically-1
https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-programmatically-1
https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-programmatically-1

ASSOCIATION AND PREDICTION 233

df::Dfs.DataFrame, y::String, xs::Vector{<:String}
)::Glm.StatsModels.TableRegressionModel� �

The function accepts a data frame (df), name of the outcome variable (y), and
names of the explanatory variables (xs). In its insides the function builds a
full additive linear model (y ~ x1 + x2 + ... + etc.). Then, it eliminates an x
(predictor variable) with the greatest p-value (only if it is greater than 0.05).
The removal process is continued for all xs until only xs with p-values ≤ 0.05
remain. If none of the xs is impactful it should return the model in the form
y ~ 1 (the intercept of this model is equal to Stats.mean(y)). Test it out, e.g. for
getMinAdeqMod(ice2, names(ice2)[1], names(ice2)[2:end]) it should return a model
in the form Cons ~ Income + Temp + TempDiff.

Hint: You can extract p-values for the coefficients of the model with Glm.coeftable(m).
↪→cols[4]. GLM got its own function for constructing model terms (Glm.term). You can
add the terms either using + operator or sum function (if you got a vector of terms).

7.9 Solutions - Association

In this sub-chapter you will find exemplary solutions to the exercises from the
previous section.

7.9.1 Solution to Exercise 1

Let’s write getRanks, but let’s start simple and use it on a sorted vector [100,
↪→500, 1000] without ties. In this case the body of getRanks function would be
something like.� �
for now the function is without types
function getRanksVer1(v)

or: ranks = collect(1:length(v))
ranks = collect(eachindex(v))
return ranks

end

getRanksVer1([100, 500, 1000])� �
[1, 2, 3]

Time to complicate stuff a bit by adding some ties in numbers.� �
for now the function is without types
function getRanksVer2(v)

initialRanks = collect(eachindex(v))

234 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

finalRanks = zeros(length(v))
for i in eachindex(v)

indicesInV = findall(x −> x == v[i], v)
finalRanks[i] = Stats.mean(initialRanks[indicesInV])

end
return finalRanks

end

(
getRanksVer2([100, 500, 500, 1000]),
getRanksVer2([100, 500, 500, 500, 1000])

)� �
([1.0, 2.5, 2.5, 4.0],
[1.0, 3.0, 3.0, 3.0, 5.0])

The findall function accepts a function (here x −> x == v[i]) and a vector (here
v). Next, it runs the function on every element of the vector and returns the
indices for which the result was true. Here we are looking for elements in v
↪→ that are equal to the currently examined (v[i]) element of v. Then, we use
indicesInV to get the initialRanks. The initialRanks[indicesInV] returns a Vector
that contains one or more (if ties occur) initialRanks for a given element of v
↪→. Finally, we calculate the average rank for a given number in v by using
Stats.mean. The function may be sub-optimall as for [100, 500, 500, 1000] the
average rank for 500 is calculated twice (once for 500 at index 2 and once for 500
at index 3) and for [100, 500, 500, 500, 1000] the average rank for 500 is calcu-
lated three times. Still, we are more concerned with the correct result and not
the efficiency (assuming that the function is fast enough) so we will leave it as
it is.

Now, the final tweak. The input vector is shuffled.� �
for now the function is without types
function getRanksVer3(v)

sortedV = collect(sort(v))
initialRanks = collect(eachindex(sortedV))
finalRanks = zeros(length(v))
for i in eachindex(v)

indicesInSortedV = findall(x −> x == v[i], sortedV)
finalRanks[i] = Stats.mean(initialRanks[indicesInSortedV])

end
return finalRanks

end

(
getRanksVer3([500, 100, 1000]),
getRanksVer3([500, 100, 500, 1000]),

ASSOCIATION AND PREDICTION 235

getRanksVer3([500, 100, 500, 1000, 500])
)� �
([2.0, 1.0, 3.0],
[2.5, 1.0, 2.5, 4.0],
[3.0, 1.0, 3.0, 5.0, 3.0])

Here, we let the built in function sort to arrange the numbers from v in the
ascending order. Then for each number from v we get its indices in sortedV and
their corresponding ranks based on that (initialRanks[indicesInSortedV]). As in
getRanksVer2 the latter is used to calculate their average.

OK, time for cleanup + adding some types for future references (before we
forget them).� �
function getRanks(v::Vector{<:Real})::Vector{<:Float64}

sortedV::Vector{<:Real} = collect(sort(v))
initialRanks::Vector{<:Int} = collect(eachindex(sortedV))
finalRanks::Vector{<:Float64} = zeros(length(v))
for i in eachindex(v)

indicesInSortedV = findall(x −> x == v[i], sortedV)
finalRanks[i] = Stats.mean(initialRanks[indicesInSortedV])

end
return finalRanks

end

(
getRanks([100, 500, 1000]),
getRanks([100, 500, 500, 1000]),
getRanks([500, 100, 1000]),
getRanks([500, 100, 500, 1000]),
getRanks([500, 100, 500, 1000, 500])

)� �
([1.0, 2.0, 3.0],
[1.0, 2.5, 2.5, 4.0],
[2.0, 1.0, 3.0],
[2.5, 1.0, 2.5, 4.0],
[3.0, 1.0, 3.0, 5.0, 3.0])

At long last we can define getSpearmCorAndPval and apply it to animals data frame.� �
function getSpearmCorAndPval(

v1::Vector{<:Real}, v2::Vector{<:Real})::Tuple{Float64, Float64}
return getCorAndPval(getRanks(v1), getRanks(v2))

end

getSpearmCorAndPval(animals.Body, animals.Brain)� �

236 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

(0.7162994456021085, 1.8128636948722132e−5)

The result appears to reflect the general relationship well (compare with Fig-
ure 34).

7.9.2 Solution to Exercise 2

The solution should be quite simple assuming you did solve exercise 4 from
ch05 (see Section 5.7.4 and Section 5.8.4) and exercise 5 from ch06 (see Sec-
tion 6.7.5 and Section 6.8.5).

Let’s startwith the helper functions, getUniquePairs (Section 5.8.4) and getSortedKeysVals
↪→ (Section 4.5) that we developed previously. For your convenience I paste
them below.� �
function getUniquePairs(names::Vector{T})::Vector{Tuple{T,T}} where T

@assert (length(names) >= 2) "the input must be of length >= 2"
uniquePairs::Vector{Tuple{T,T}} =

Vector{Tuple{T,T}}(undef, binomial(length(names), 2))
currInd::Int = 1
for i in eachindex(names)[1:(end−1)]

for j in eachindex(names)[(i+1):end]
uniquePairs[currInd] = (names[i], names[j])
currInd += 1

end
end
return uniquePairs

end

function getSortedKeysVals(d::Dict{T1,T2})::Tuple{
Vector{T1},Vector{T2}} where {T1,T2}
sortedKeys::Vector{T1} = keys(d) |> collect |> sort
sortedVals::Vector{T2} = [d[k] for k in sortedKeys]
return (sortedKeys, sortedVals)

end� �
Now, time to get all possible ‘raw’ correlations.� �
function getAllCorsAndPvals(

df::Dfs.DataFrame, colsNames::Vector{String}
)::Dict{Tuple{String,String},Tuple{Float64,Float64}}

uniquePairs::Vector{Tuple{String,String}} = getUniquePairs(colsNames)
allCors::Dict{Tuple{String,String},Tuple{Float64,Float64}} = Dict(

(n1, n2) => getCorAndPval(df[!, n1], df[!, n2]) for (n1, n2)
in

ASSOCIATION AND PREDICTION 237

uniquePairs)

return allCors
end� �
getAllCorsAndPvals (generic function with 1 method)

We start by getting the uniquePairs for the columns of interest colNames. Then
we use dictionary comprehension to get our result. We iterate through each
pair for (n1, n2) in uniquePairs. Each uniquePair is composed of a tuple (n1, n2)
↪→, where n1 - name1, n2 - name2. While traversing the uniquePairs we calculate
the correlations and p-values (getCorAndPval) by selecting columns of interest
(df[:, n1] and df[:, n2]). And that’s it. Let’s see how it works and how many
false positives we got (remember, we expect 2 or 3).� �
allCorsPvals = getAllCorsAndPvals(bogusCors, letters)
falsePositves = (map(t −> t[2], values(allCorsPvals)) .<= 0.05) |> sum
falsePositves� �
3

First, we extract the values from our dictionary with values(allCorsPvals). The
values are a vector of tuples [(cor, pval)]. To get p-values alone, we use map
function that takes every tuple (t) and returns its second element (t[2]). Fi-
nally, we compare the p-valueswith our cutoff level for type 1 error (𝛼 = 0.05).
And sum the Bools (each true is counted as 1, and each false as 0).

Anyway, as expected we got 3 false positives. All that’s left to do is to apply
the multiplicity correction.� �
function adjustPvals(

corsAndPvals::Dict{Tuple{String,String},Tuple{Float64,Float64}},
adjMeth::Type{M}

)::Dict{Tuple{String,String},Tuple{Float64,Float64}} where
{M<:Mt.PValueAdjustment}

ks, vs = getSortedKeysVals(corsAndPvals)
cors::Vector{<:Float64} = map(t −> t[1], vs)
pvals::Vector{<:Float64} = map(t −> t[2], vs)
adjustedPVals::Vector{<:Float64} = Mt.adjust(pvals, adjMeth())
newVs::Vector{Tuple{Float64,Float64}} = collect(

zip(cors, adjustedPVals))

return Dict(ks[i] => newVs[i] for i in eachindex(ks))
end� �

238 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

41 https://docs.julialang
.org/en/v1/stdlib/Stat
istics/#Statistics.cor

adjustPvals (generic function with 1 method)

The code is rather self explanatory and relies on step by step operations: 1)
getting our p-values (pvals), 2) applying an adjustment method (adjMeth) on
them (Mt.adjust), and 3) combining the adjusted p-values (adjustedPVals) with
cors again. For that last purpose we use zip function we met in Section 6.8.1.
Finally we recreate a dictionary using comprehension. Time for some tests.� �
allCorsPvalsAdj = adjustPvals(allCorsPvals, Mt.BenjaminiHochberg)
falsePositves = (map(t −> t[2], values(allCorsPvalsAdj)) .<= 0.05) |> sum
falsePositves� �
0

We cannot expect a multiplicity correction to be a 100% error-proof solution.
Still, it’s better than doing nothing and in our case it did the trick, we got rid
of false positives.

7.9.3 Solution to Exercise 3

Let’s start by writing a function to get a correlation matrix. We could use for
that Stats.cor41 like so Stats.cor(bogusCors). But since we need to add signifi-
cance markers then the p-values for the correlations are indispensable. As far
as I’m aware the package does not have it, then we will write a function of our
own.� �
function getCorsAndPvalsMatrix(

df::Dfs.DataFrame,
colNames::Vector{String})::Array{<:Tuple{Float64, Float64}}

len::Int = length(colNames)
corsPvals::Dict{Tuple{String,String},Tuple{Float64,Float64}} =

getAllCorsAndPvals(df, colNames)
mCorsPvals::Array{Tuple{Float64,Float64}} = fill((0.0, 0.0), len, len)

for cn in eachindex(colNames) # cn − column number
for rn in eachindex(colNames) # rn − row number

corPval = (
haskey(corsPvals, (colNames[rn], colNames[cn])) ?
corsPvals[(colNames[rn], colNames[cn])] :
get(corsPvals, (colNames[cn], colNames[rn]), (1, 1))

)
mCorsPvals[rn, cn] = corPval

end
end

https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor
https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor

ASSOCIATION AND PREDICTION 239

42 https://docs.julialang
.org/en/v1/base/arrays
/#Base.fill

return mCorsPvals
end� �
getCorsAndPvalsMatrix (generic function with 1 method)

The function getCorsAndPvalsMatrix uses getAllCorsAndPvals we developed previ-
ously (Section 7.9.2). Then we define the matrix (our result), we initialize it
with the fill function42 that takes an initial value and returns an array of a
given size filled with that value ((0.0, 0.0)). Next, we replace the initial val-
ues in mCorsPvals with the correct ones by using two for loops. Inside them we
extract a tuple (corPval) from the unique corsPvals. First, we test if a corPval for
a given two variables (e.g. “a” and “b”) is in the dictionary corsPvals (haskey
etc.). If so thenwe insert it into the mCorsPvals. If not, thenwe search in corsPvals
by its reverse (so, e.g. “b” and “a”) with get(corsPvals, (colNames[cn], colNames
↪→[rn]), etc.). If that combination is not present then we are looking for the
correlation of a variable with itself (e.g. “a” and “a”) which is equal to (1, 1)
(for correlation coefficient and p-value, respectively). Once we are done we
return our mCorsPvals matrix (aka Array). Time to give it a test run.� �
getCorsAndPvalsMatrix(bogusCors, ["a", "b", "c"])� �
3×3 Matrix{Tuple{Float64, Float64}}:
(1.0, 1.0) (0.194, 0.591239) (−0.432251, 0.212195)
(0.194, 0.591239) (1.0, 1.0) (−0.205942, 0.568128)
(−0.432251, 0.212195) (−0.205942, 0.568128) (1.0, 1.0)

The numbers seem to be OK. In the future, you may consider changing the
function so that the p-values are adjusted, e.g. by using Mt.BenjaminiHochberg
correction, but here we need some statistical significance for our heatmap so
we will leave it as it is.

Now, let’s move to drawing a plot.� �
mCorsPvals = getCorsAndPvalsMatrix(bogusCors, letters)
cors = map(t −> t[1], mCorsPvals)
pvals = map(t −> t[2], mCorsPvals)
nRows, _ = size(cors) # same num of rows and cols in our matrix
xs = repeat(1:nRows, inner=nRows)
ys = repeat(1:nRows, outer=nRows)[end:−1:1]

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],

xticks=(1:1:nRows, letters[1:nRows]),
yticks=(1:1:nRows, letters[1:nRows][end:−1:1])

https://docs.julialang.org/en/v1/base/arrays/#Base.fill
https://docs.julialang.org/en/v1/base/arrays/#Base.fill
https://docs.julialang.org/en/v1/base/arrays/#Base.fill

240 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

)
hm = Cmk.heatmap!(ax1, xs, ys, [cors...],

colormap=:RdBu, colorrange=(−1, 1))
Cmk.text!(ax1, xs, ys,

text=string.(round.([cors...], digits=2)) .∗
getMarkerForPval.([pvals...]),

align=(:center, :center),
color=getColorForCor.([cors...]))

Cmk.hlines!(ax1, 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.vlines!(ax1, 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.Colorbar(fig[:, end+1], hm)
fig� �
We begin by preparing the necessary helper variables (mCorsPvals, cors, pvals,
nRows, xs, ys). The last two are the coordinates of the centers of squares on the
X- and Y-axis. The cors will be flattened row by row using [cors...] syntax.
For your information repeat([1, 2], inner = 2) returns [1, 1, 2, 2] and repeat
↪→([1, 2], outer = 2) returns [1, 2, 1, 2]. The ys vector is then reversed with
[end:−1:1] to make it reflect better the order of correlations in cors (left to right,
row by row). The same goes for yticks below. The above was determined to be
the right option by trial and error. The next important parameter is colorrange
↪→=(−1, 1) it ensures that −1 is always the leftmost color (red) from the :RdBu
↪→ colormap and 1 is always the rightmost color (blue) from the colormap.
Without it the colors would be set to minimum(cors) and maximum(cors) which we
do not want since the minimum will change from matrix to matrix. Over our
heatmapwe overlay the grid (hlines! and vlines!) tomake the squares separate
better from each other. The centers of the squares are at integers, and the edges
are at halves, that’s why we start the ticks at 1.5. Finally, we add Colorbar as
they did in the docs for Cmk.heatmap. The result of this code is visible in Figure
33 from the previous section.

OK, let’s add the correlation coefficients and statistical significance markers.
But first, two little helper functions.� �
function getColorForCor(corCoeff::Float64)::String

@assert (0 <= abs(corCoeff) <= 1) "abc(corCoeff) must be in range [0−1]"
return (abs(corCoeff) >= 0.65) ? "white" : "black"

end

function getMarkerForPval(pval::Float64)::String
@assert (0 <= pval <= 1) "probability must be in range [0−1]"
return (pval <= 0.05) ? "#" : ""

end� �
getMarkerForPval (generic function with 1 method)

ASSOCIATION AND PREDICTION 241

As you can see getColorForCor returns a color (“white” or “black”) for a given
value of correlation coefficient (white color will make it easier to read the cor-
relation coefficient on a dark red/blue background of a square). On the other
hand getMarkerForPval returns a marker (“#”) when a pvalue is below our cus-
tomary cutoff level for type I error.� �
fig = Cmk.Figure()
ax, hm = Cmk.heatmap(fig[1, 1], xs, ys, [cors...],

colormap=:RdBu, colorrange=(−1, 1),
axis=(;

xticks=(1:1:nRows, letters[1:nRows]),
yticks=(1:1:nRows, letters[1:nRows][end:−1:1])

))
Cmk.text!(fig[1, 1], xs, ys,

text=string.(round.([cors...], digits=2)) .∗
getMarkerForPval.([pvals...]),

align=(:center, :center),
color=getColorForCor.([cors...]))

Cmk.hlines!(fig[1, 1], 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.vlines!(fig[1, 1], 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.Colorbar(fig[:, end+1], hm)
fig� �
The only new element here is Cmk.text! function, but since we used it a couple
of times throughout this book, then I will leave the explanation of how the
code piece works to you. Anyway, the result is to be found below.

It looks good. Also the number of significance markers is right. Previously
(Section 7.9.2) we said we got 3 significant correlations (based on ‘raw’ p-
values). Since, the upper right triangle of the heatmap is a mirror reflection of
the lower left triangle, then we should see 6 significance markers altogether.
As a final step (that I leave to you) we could enclose the code from this task
into a neat function named, e.g. drawHeatmap.

7.9.4 Solution to Exercise 4

OK, the code for this task is quite straightforward so let’s get right to it.� �
function drawDiagPlot(

reg::Glm.StatsModels.TableRegressionModel,
byCol::Bool = true)::Cmk.Figure
dim::Vector{<:Int} = (byCol ? [1, 2] : [2, 1])
res::Vector{<:Float64} = Glm.residuals(reg)
pred::Vector{<:Float64} = Glm.predict(reg)
form::String = string(Glm.formula(reg))
fig = Cmk.Figure(size=(800, 800))
ax1 = Cmk.Axis(fig[1, 1],

242 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

Figure 7.12: Correlation
heatmap for data
in bogusCors with
the coefficients and
significance markers.

43 https://en.wikipedia
.org/wiki/Normal_dis
tribution#Standard_nor
mal_distribution

title="Residuals vs Fitted\n" ∗ form,
xlabel="Fitted values",
ylabel="Residuals")

Cmk.scatter!(ax1, pred, res)
Cmk.hlines!(ax1, 0, linestyle=:dash, color="gray")
ax2 = Cmk.Axis(fig[dim...],

title="Normal Q−Q\n" ∗ form,
xlabel="Theoretical Quantiles",
ylabel="Standarized residuals")

Cmk.qqplot!(ax2,
Dsts.Normal(0, 1),
getZScore.(res, Stats.mean(res), Stats.std(res)),
qqline=:identity)

return fig
end� �
We begin with extracting residuals (res) and predicted (pred) values from our
model (reg). Additionally, we extract the formula (form) as a string. Then, we
prepare a scatter plot (Cmk.scatter) with pred and res placed on X- and Y-axis,
respectively. Next, we add a horizontal line (Cmk.hlines!) at 0 on Y-axis (the
points should be randomly scattered around it). All that’s left to do is to build
the required Q-Q plot (qqplot) with X-axis that contains the theoretical stan-
dard normal distribution43 (Dsts.Normal(0, 1)) and Y-axis with the standard-
ized (getZScore) residuals (res). We also add qqline=:identity (here, identity

https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_distribution

ASSOCIATION AND PREDICTION 243

means x = y) to facilitate the interpretation [if two distributions (on X- and
Y-axis)] are alike then the points should lie roughly on the line. Since the vi-
sual impression we get may depend on the spacial arrangement (stretching or
tightening of the points on a graph) our function enables us to choose (byCol)
between column (true) and row (false) alignment of the subplots.

For a change let’s test our function on the iceMod2 from Section 7.7. Behold the
result of drawDiagPlot(iceMod2, false).

Figure 7.13: Diagnostic
plot for regression
model (iceMod2).

Hmm, I don’t know about you but tome the bottompanel looks rather normal.
However, the top panel seems to display a wave (‘w’) pattern. This may be a
sign of auto-correlation (explanation in a moment) and translate into insta-
bility of the estimation error produced by the model across the values of the
explanatory variable(s). The error will display a wave pattern (once bigger
once smaller). Now we got a choice, either we leave this model as it is (and
we bear the consequences) or we try to find a better one.

To understand what the auto-correlation means in our case let’s do a thought

244 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

44 https://vincentarelb
undock.github.io/Rda
tasets/doc/Ecdat/Icecr
eam.html

experiment. Right now in the room that I am sitting the temperature is equal
to 20 degrees of Celsius (68 deg. Fahrenheit). Which one is the more probable
value of the temperature in 1minute from now: 0 deg. Cels. (32 deg. Fahr.) or
21 deg. Cels. (70 deg. Fahr.)? I guess the latter is the more reasonable option.
That is because the temperature one minute from now is a derivative of the
temperature in the present (i.e. both values are correlated).

The samemight be true for Icecream44 data frame, since it contains Temp column
that we used in our model (iceMod2). We could try to remedy this by removing
(kind of) the auto-correlation, e.g. with ice2 = ice[2:end, :] and ice2.TempDiff
↪→= ice.Temp[2:end] .− ice.Temp[1:(end−1)] and building our model a new. This
is what we will do in the next exercise (although we will try to automate the
process a bit).

7.9.5 Solution to Exercise 5

Let’s start with a few helper functions.� �
function getLinMod(

df::Dfs.DataFrame,
y::String, xs::Vector{<:String}
)::Glm.StatsModels.TableRegressionModel
return Glm.lm(Glm.term(y) ~ sum(Glm.term.(xs)), df)

end

function getPredictorsPvals(
m::Glm.StatsModels.TableRegressionModel)::Vector{<:Float64}
allPvals::Vector{<:Float64} = Glm.coeftable(m).cols[4]
1st pvalue is for the intercept
return allPvals[2:end]

end

function getIndsEltsNotEqlM(v::Vector{<:Real}, m::Real)::Vector{<:Int}
return findall(x −> !isapprox(x, m), v)

end� �
We begin with getLinMod that accepts a data frame (df), name of the dependent
variable (y) and names of the independent/predictor variables (xs). Based on
the inputs it creates the model programmatically using Glm.term.

Next, we go with getPredictorsPvals that returns the p-values corresponding to
a model’s coefficients.

Then, we define getIndsEltsNotEqlM that we will use to filter out the highest p-
value from our model.

OK, time for the main actor of the show.

https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html

ASSOCIATION AND PREDICTION 245

� �
returns minimal adequate (linear) model
function getMinAdeqMod(

df::Dfs.DataFrame, y::String, xs::Vector{<:String}
)::Glm.StatsModels.TableRegressionModel

preds::Vector{<:String} = copy(xs)
mod::Glm.StatsModels.TableRegressionModel = getLinMod(df, y, preds)
pvals::Vector{<:Float64} = getPredictorsPvals(mod)
maxPval::Float64 = maximum(pvals)
inds::Vector{<:Int} = getIndsEltsNotEqlM(pvals, maxPval)

for _ in xs
if (maxPval <= 0.05)

break
end
if (length(preds) == 1 && maxPval > 0.05)

mod = Glm.lm(Glm.term(y) ~ Glm.term(1), df)
break

end
preds = preds[inds]
mod = getLinMod(df, y, preds)
pvals = getPredictorsPvals(mod)
maxPval = maximum(pvals)
inds = getIndsEltsNotEqlM(pvals, maxPval)

end

return mod
end� �
We begin with defining the necessary variables that we will update in a for
loop. The variables are: predictors (preds), linear model (mod), p-values for the
model’s coefficients (pvals), maximum p-value (maxPval) and indices of predic-
tors that wewill leave in ourmodel (inds). We start each iteration (for _ in xs)
by checking if we already reached our minimal adequate model. To that end
we make sure that all the remaining coefficients are statistically significant (if
↪→ (maxPval <= 0.05)) or if we run out of the explanatory variables (length(preds
↪→) == 1 && maxPval > 0.05) we return our default (y ~ 1) model (the intercept
of this model is equal to Stats.mean(y)). If not then we remove one predictor
variable from themodel (preds = preds[inds]) and update the remaining helper
variables (mod, pvals, maxPval, inds). And that’s it, let’s see how it works.� �
ice2mod = getMinAdeqMod(ice2, names(ice2)[1], names(ice2)[2:end])
ice2mod� �
───

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
───

246 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

(Intercept) −0.0672 0.0988 −0.68 0.5024 −0.2707 0.1363
Income 0.0031 0.001 2.99 0.0062 0.001 0.0053
Temp 0.0032 0.0004 7.99 <1e−99 0.0024 0.004
TempDiff 0.0022 0.0007 2.93 0.0071 0.0006 0.0037
───

It appears to work as expected. Let’s compare it with a full model.� �
ice2FullMod = getLinMod(ice2, names(ice2)[1], names(ice2)[2:end])

Glm.ftest(ice2FullMod.model, ice2mod.model)� �
F−test: 2 models fitted on 29 observations
───

DOF ΔDOF SSR ΔSSR R² ΔR² F∗ p(>F)
───
[1] 10 0.0193 0.8450
[2] 5 −5 0.0227 0.0034 0.8179 −0.0272 0.7019 0.6285
───

It looks good as well. We reduced the number of explanatory variables while
maintaining comparable (p > 0.05) explanatory power of our model.

Time to check the assumptions with our diagnostic plot (drawDiagPlot from Sec-
tion 7.9.1).

To me, the plot has slightly improved and since I run out of ideas how to make
our model even better I’ll leave it as it is.

Now, let’s compare our ice2mod, that aimed to counteract the auto-correlation,
with its predecessor (iceMod2). We will focus on the explanatory powers (ad-
justed 𝑟2, the higher the better)� �
(

Glm.adjr2(iceMod2),
Glm.adjr2(ice2mod)

)� �
(0.6799892012945553, 0.796000295561351)

and the average prediction errors (the lower the better).� �
(

getAvgEstimError(iceMod2),
getAvgEstimError(ice2mod)

)� �

ASSOCIATION AND PREDICTION 247

Figure 7.14: Diagnostic
plot for regression
model (ice2mod).

(0.026114993652645798, 0.022116071809225545)

Again, it appears that we managed to improve our model’s prediction power
at a cost of slightly more difficult interpretation (go ahead examine the output
tables for Income + Temp + TempDiff vs. Income + Temp and explain to yourself how
each variable influences the value of Cons). This is usually the case, the less
straightforward the model, the less intuitive is its interpretation.

At a very long last wemay check how our getMinAdeqModwill behave when there
are no meaningful explanatory variables.� �
getMinAdeqMod(ice2, "Cons", ["a", "b", "c", "d"])� �
Cons ~ 1

Coefficients:
──

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
──
(Intercept) 0.358517 0.012397 28.92 <1e−21 0.333123 0.383911
──

248 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

In that case (nomeaningful explanatory variables) our best estimate (guess) of
the value of y (here Cons) is the variable’s average (Stats.mean(ice2.Cons)) which
is returned as the Coef. for (Intercept). In that case Std. Error is just the standard
error of the mean that we met in Section 5.2 (compare with getSem(ice2.Cons)).

Overall, our getMinAdeqMod should work reasonably well for a small number
of explanatory variables (the xs argument). When the number of predictors
grows, some of them are likely to be significant by chance alone (comparewith
the discussion in Section 5.6).

Anyway, building our minimal adequate model from top to bottom (as we did
here) is not the only possible procedure. Equally reasonable is to apply the
bottom to top approach. In that case we start with separate models with 1
explanatory variable each. Of those models we choose the one with the lowest
p-value. Next we add to it one explanatory variable at a time (based on the p-
value, the lower the better) until we reach our final model (nomore significant
explanatory variables left). Sadly, the two methods although equally sound
do not always produce the same result (the same minimal adequate model).
Unfortunately, as far as I’m aware there is not much to be done with it, so we
must live with that fact.

1 https://rseek.org/
2 https://en.wikipedia.o
rg/wiki/R_(programm
ing_language)
3 https://github.com/J
uliaInterop/RCall.jl

8 Time to say goodbye

They say that all that has its beginning must have its end. So I guess it’s time
to …, OK, but before we part let me give you a word of advice.

Julia is a nice programming languagewithmany applications, including statis-
tics (probably way beyond the level covered in this book). Still, if you are new
to (Julia) programming and statistics then most likely you should calibrate
your tools first. Before you run some statistical analysis you may want to try it
out on an example from a textbook written by an expert (not me though) and
see if you get the same (or at least comparable) result on your own. Although
this is a sound approach, I suspect you are more prone to visit some statisti-
cal blog or internet forum and go with the examples that are contained there.
One such option is rseek.org1, i.e. a search engine for the R programming lan-
guage2. In that case RCall.jl3 will be of assistance.

For instance let’s say that I copied the beerVolumes example (see Section 5.2)
from some R forum (I didn’t). Now, without leaving Julia I can paste and
execute the R’s code (R’s code goes between the quotation marks in RC.R"").� �
import RCall as RC

RC.R"
beerVolumes <− c(504, 477, 484, 476, 519, 481, 453, 485, 487, 501)
t.test(beerVolumes, mu=500)
"� �

Note: For that code to work you need to have the R programming language in-
stalled on your machine.� �

One Sample t−test

data: beerVolumes
t = −2.3294, df = 9, p−value = 0.04479
alternative hypothesis: true mean is not equal to 500
95 percent confidence interval:
473.7837 499.6163
sample estimates:
mean of x

486.7� �

https://rseek.org/
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://github.com/JuliaInterop/RCall.jl
https://github.com/JuliaInterop/RCall.jl

250 ROMEO AND JULIA, WHERE ROMEO IS BASIC STATISTICS

4 https://juliastats.org
/HypothesisTests.jl/st
able/parametric/#t-test

Then, I can compare it with the output of Ht.OneSampleTTest. That way I can
validate it and see if it is a credible Julia’s equivalent of R’s t.test. The above,
is also the way to test my understanding of Julia’s function that stems from the
docs4.� �
import HypothesisTests as Ht

beerVolumes = [504, 477, 484, 476, 519, 481, 453, 485, 487, 501]
Ht.OneSampleTTest(beerVolumes, 500)� �
One sample t−test
−−−−−−−−−−−−−−−−−
Population details:

parameter of interest: Mean
value under h_0: 500
point estimate: 486.7
95% confidence interval: (473.8, 499.6)

Test summary:
outcome with 95% confidence: reject h_0
two−sided p−value: 0.0448

Details:
number of observations: 10
t−statistic: −2.329353706113303
degrees of freedom: 9
empirical standard error: 5.70973826993069

Once I got both outputs that are similar enough I can be fairly sure I did right.
Otherwise I should investigate where the differences come from and possibly
make some necessary adjustments.

Now, let me follow a word of advice with a word of warning. The book con-
tains a description of statistics the way I see it, not necessarily the way it really
is. Additionally, many times I simplified stuff, e.g. by avoiding mathematics
and mathematical formulas that go beyond the level of a primary school (in
Poland grades 1-8). Moreover, I also tried to limit the number of Julia’s con-
structs in the examples. In the end I wrote that book for myself from the past,
so if you ever met me then be sure to pass it on me. I would have loved to read
it. But then again, back in the daywhen I was a student there was no Julia, and
my English was too poor. Oh, well, just enjoy the book yourself.

Take care.

Bartłomiej Łukaszuk - author

https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test

	About
	Why Julia
	Julia is fast
	Julia is simple
	Pleasure to write
	Not mainstream
	Julia is free

	Julia - first encounter
	Installation
	Language Constructs
	Variables
	Functions
	Decision Making
	Repetition
	Additional libraries
	Julia - Exercises
	Julia - Solutions

	Statistics - introduction
	Chapter imports
	Probability - definition
	Probability - properties
	Probability - theory and practice
	Probability distribution
	Normal distribution
	Hypothesis testing
	Statistics intro - Exercises
	Statistics intro - Solutions

	Comparisons - continuous data
	Chapter imports
	One sample Student’s t-test
	Two samples Student’s t-test
	One-way ANOVA
	Post-hoc tests
	Multiplicity correction
	Exercises - Comparisons of Continuous Data
	Solutions - Comparisons of Continuous Data

	Comparisons - categorical data
	Chapter imports
	Flashback
	Chi squared test
	Fisher’s exact test
	Bigger table
	Test for independence
	Exercises - Comparisons of Categorical Data
	Solutions - Comparisons of Categorical Data

	Association and Prediction
	Chapter imports
	Linear relation
	Covariance
	Correlation
	Correlation Pitfalls
	Simple Linear Regression
	Multiple Linear Regression
	Exercises - Association and Prediction
	Solutions - Association

	Time to say goodbye

