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About

Hi, I’m Bart and this is my first ‘experimental’ book entitled (for now):

“Romeo and Julia, where Romeo is Basic Statistics”

In this book I will explore some basic statistics (the way I see it) with
Julia¹ . Actually, I wrote the book for myself from the past. Too bad the

¹https://julialang.org/

past me won’t be able to read it. Nevertheless, I hope it is gonna be of
value to someone that resembles me from the old days. Additionally, I
wrote it to solidify my own knowledge of statistics and Julia, after all
they say we best teach that of what we learn :) Still, the book may
contain some errors so don’t believe everything you read here.

Who am I (not)? I’m not a statistician, a mathematician, or a computer
scientist, but a biologist by education. Nowadays, I’m a programming
enthusiast. To be honest, statistics was not my favorite subject when I
was at college. I didn’t quite get it then, I got it somewhat better now.
Hopefully all this will make the book easier to digest, although
possibly a little biased towards biology.

Oh yeah, I almost forgot, I’m not an English native speaker (keep that
in mind while reading this book). Still, despite all the book’s (and
mine) flaws, I hope you will find it useful (it is available under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International² 
license).

²http://creativecommons.org/licenses/by-nc-sa/4.0/
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Why Julia

Before we jump into statistics I think we need to explain why should
we use Julia³ and not, e.g.  Python⁴ or R⁵ .

³https://julialang.org/
⁴https://www.python.org/
⁵https://www.r-project.org/

In other words, am I mad to use Julia for statistics instead of R (a
project developed for statistical computing) or more popular (also in
the field of Data Science) Python?

Well, I hope that I’m just biased. I like Julia because:

1. it’s fast
2. it’s simple
3. it’s a pleasure to write programs with it
4. it’s a less mainstream language
5. it’s free and open source

Julia is fast
Once upon a time I wrote these three time consuming programs (so
hold your horses, you may not want to run them):

# file: test.jl
for i in 1:1_000_000_000
    if i == 500_000_000
        println("Half way through. I counted to 500 million.")
    end
end
println("Done. I counted to 1 billion.")

# file: test.py
for i in range(1_000_000_000):
    if i == 500_000_000:
        print("Half way through. I counted to 500 million.")
print("Done. I counted to 1 billion.")

# file: test.r
for (i in 1:1000000000) {
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  if (i == 500000000) {
    print("Half way through. I counted to 500 million.")
  }
}
print("Done. I counted to 1 billion.")

Note: Python and Julia allow to write numbers either like this:
1000, or like that 1_000. The latter form uses _ to separate
thousands, so more typing, but it is more legible.

Each program counts to 1 billion (1 with 9 zeros). Once it is half way
through it displays an info on the screen and when it is done counting
it prints another message.

The execution times of the scripts on my few-years old laptop (the
specification is not that important):

1. Julia: ~1.5 [sec]
2. R: ~33 [sec]
3. Python3: ~50 [sec]

Granted, it’s not a proper benchmark, and e.g. Python’s numpy⁶ library
runs with the speed of C⁷ (so a bit faster than Julia). Nevertheless, the

⁶https://github.com/numpy/numpy
⁷https://en.wikipedia.org/wiki/C_(programming_language)

code that I write in Julia is consistently ~5-10 times faster than the
code I write in the other two programming languages. This is
especially evident when running computer simulations like the ones
you may find in this book, still, it is just a subjective feeling.

Fun fact: A human being would likely need more than 32 years to
count to 1 billion. Test yourself and show why. Hint: try to estimate for
how long you are alive [in seconds].

Julia is simple
What I mean by Julia’s simplicity is its nice, friendly and terse syntax.
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For instance to write a simple Hello world⁸ program all I have to do is
to type:

⁸https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

println("Hello World!")

then save and run the file.

For comparison a similar program in Java⁹ (a popular programming
language) looks something like:

⁹https://en.wikipedia.org/wiki/Java_(programming_language)

// file: HelloWorld.java
class HelloWorld {
    public static void main(String args[]) {
        System.out.println("Hello World");
    }
}

For me too much boilerplate code. The code that I don’t want to type,
read or process in my head. Additionally, in general a Java’s code will
probably not run faster than its Julia’s counterpart. Moreover, the
difference in lengths may be even greater for more complicated
programs.

Pleasure to write
According to this stack overflow’s survey¹⁰ Julia got one of the best
loved/dreaded ratio among the examined programming languages.

¹⁰https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-
programming-scripting-and-markup-languages

This is also true for me. I like writing programs in Julia (hopefully so
will you).

Not mainstream
Not being ‘a mainstream programming language’ got its drawbacks
(missing packages or community support, etc.). Luckily, Julia is big and
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mature enough, it seems to be growing at a good pace, and got a pretty
nice interoperability¹¹ with other programming languages.

¹¹https://forem.julialang.org/ifihan/interoperability-in-julia-1m26

Moreover, not being a mainstream language is like an opportunity, a
gap to fill, a venue to explore (hence this book).

Julia is free
Julia is a free and open source programming language as stated on its
official website¹² :

¹²https://julialang.org/

Julia is an open source project with over 1,000 contributors. It is
made available under the MIT license. The source code is
available on GitHub.

OK, enough preaching, time for our first date with Julia.
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Julia - first encounter

Before we begin a warning. This book is not intended to be a
comprehensive introduction to Julia programming. If you are looking
for one try, e.g.  Think Julia¹³ . On the other hand, if the above-

¹³https://benlauwens.github.io/ThinkJulia.jl/latest/book.html

mentioned book is too much for you, and all you want is a short
introduction see learn Julia in Y minutes¹⁴ . For a video introduction
try, e.g.  A Gentle Introduction to Julia¹⁵ .

¹⁴https://learnxinyminutes.com/docs/julia/
¹⁵https://www.youtube.com/watch?v=4igzy3bGVkQ

Still, regarding the current book, I think we need to cover some
selected basics of the language in order to use it later. The rest of it we
will catch ‘on the fly’. Without further ado let’s get our hands dirty.

Installation
In order to use Julia we need to install it first. So, now is the time to go
to julialang.org¹⁶ , click ‘Download’ and choose the version suitable for
your machine’s OS.

¹⁶https://julialang.org/

To check the installation open the Terminal¹⁷ and type:

¹⁷https://en.wikipedia.org/wiki/Terminal_emulator

julia --version

When I wrote those words the first time I used Julia version ~1.8,
currently I’m using:

VERSION

1.10.7

running on a Gnu/Linux operating system. Keep that in mind, cause
sometimes it may make a difference, e.g. reading the contents of a file
(file path) may be OS specific.
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At the bottom of the Julia’s web page you will find ‘Editors and IDEs’
section presenting the most popular editors that will enable you to
effectively write and execute pieces of Julia’s code.

For starters I would go with Visual Studio Code¹⁸ a popular, user
friendly code editor for Julia. In the link above you will find the
installation and configuration instructions for the editor.

¹⁸https://www.julia-vscode.org/docs/dev/gettingstarted/#Installation-and-
Configuration-1

From now on you’ll be able to use it interactively (to run Julia code
from this book).

All You need to do is to create a file, e.g. chapter03.jl (or open that
file from the code snippets¹⁹ ), type the code presented in this chapter

¹⁹https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch03

and run it by marking the code with your mouse and pressing
Ctrl+Enter.

Language Constructs
Let’s start by looking at some language features, namely:

1. Variables
2. Functions
3. Decision making
4. Repetition

Variables
The way I see it a variable is a box to store some value.

Type

x = 1

mark it (highlight it with a mouse) and run by pressing Ctrl+Enter.

This creates a variable (an imaginary box) named x (x is a label on the
box) that contains the value 1. The = operator assigns 1 (right side) to x
(left side) [puts 1 into the box].
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Note: Spaces around mathematical operators like = are usually
not necessary. Still, they improve legibility of your code.

Now, somewhat below type and execute

x = 2

Congratulations, now the value stored in the box (I mean variable x) is
2 (the previous value is gone).

Sometimes (usually I do this inside of functions, see Section  3.4 ) you
may see variables written like that

z::Int = 4

or

zz::Float64 = 4.4

The :: is a type declaration. Here by using ::Int you promise Julia
that you will store only integers²⁰ (like: …, −1, 0, 1, …) in this box.

²⁰https://en.wikipedia.org/wiki/Integer

Whereas by typing ::Float64 you declare to place only floats²¹ (like:
…, 1.1, 1.0, 0.0, 2.2, 3.14, …) in that box.

²¹https://en.wikipedia.org/wiki/Floating-point_arithmetic

Note: You can either explicitly declare a type (with ::) or let Julia
guess it (when it’s not declared, like in the case of x above). In
either situation you can check the type of a variable with typeof
function, e.g. typeof(x) or typeof(zz).

Optional type declaration
In Julia type declaration is optional. You don’t have to do this, Julia
will figure out the types anyway. Still, sometimes it is worth to declare
them (explanation in a moment). If you decide to do so, you should
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declare a variable’s type only once (the time it is first created and
initialized with a value).

If you use a variable without a type declaration then you can freely
reassign to it values of different types.

Note: In the code snippet below # and all the text to the right of it
is a comment, the part that is ignored by a computer but read by a
human.

a = 1 # type is not declared
a = 2.2 # can assign a value of any other type
# the "Hello" below is a string (a text in a form readable by Julia)
a = "Hello"

But you cannot assign (to a variable) a value of a different type than
the one you declared (you must keep your promises). Look at the code
below.

This is OK.

b::Int = 1 # type integer declared
b = 2 # value of type integer delivered

But this is not OK (it’s wrong! it’s wroooong!).

c::Int = 1 # type integer declared
c = 3.3 # broke the promise, float delivered, it will produce an error
c = 3.1 # again, broke the promise, float delivered, expect error

Now a question arises. Why would you want to use a type declaration
(like ::Int or ::Float64) at all?

In general you put values into variables to use them later. Sometimes,
you forget what you placed there and may get an unexpected result (it
may even go unnoticed for some time). For instance it makes more
sense to use integer instead of string for some operations (e.g. I may
wish to multiply 3 by 3 not "three" by "three").
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x = 3
x * x # works as you intended

9

x = "three"
x * x # the result may be surprising

threethree

Note: Julia gives you a standard set of mathematical operators,
like addition (+), subtraction (-), multiplication (*), division (/)
and more (see the docs²² ).

²²https://docs.julialang.org/en/v1/base/math/#math-ops

The latter is an example of a so called string concatenation²³ , it may be
useful (as we will see later in this book), but probably it is not what
you wanted.

²³https://docs.julialang.org/en/v1/manual/strings/#man-concatenation

To avoid such unexpected events (especially if instead of * you use
your own function, see Section  3.4 ) you would like a guarding angel
that watches over you. This is what Julia does when you require it by
using type declarations (for now you need to take my word for it).

Moreover, declaring types sometimes may make your code run faster
(although rather rarely²⁴ ).

²⁴https://discourse.julialang.org/t/learning-julia-for-scientists-who-are-
beginning-programmers/108638/42

Additionally, some IDEs²⁵ work better (improved code completions, and
hints) when you place type declarations in your code.

²⁵https://en.wikipedia.org/wiki/Integrated_development_environment

Personally, I like to use type declarations in my own functions (see the
upcoming Section  3.4 ) to help me reason what they do. At first I write
functions without types at all (it’s easier that way). Once I got them
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running I add the types to them (it us useful for future reference, code
maintenance, etc.).

Meaningful variable names
Name your variables well. The variable names I used before are
horrible (mea culpa, mea culpa, mea maxima culpa). We use named
variables (like x = 1) instead of ‘loose’ variables (you can type 1 alone
in a script file and execute that line) to use them later.

You can use them later in time (reading and editing your code
tomorrow or next month/year) or in space (using it 30 or 300 lines
below). If so, the names need to be memorable (actually just
meaningful will do :D). So whenever possible use: studentAge = 19,
bookTitle = "Dune" (grammatical correctness is not that important)
instead of x = 19, y = "Dune".

You may want to check Julia’s Docs for the allowed variable names²⁶ 
and the recommended stylistic conventions²⁷ (for now, always start

²⁶https://docs.julialang.org/en/v1/manual/variables/#man-allowed-variable-
names

²⁷https://docs.julialang.org/en/v1/manual/variables/#Stylistic-Conventions

with a small letter, and use alphanumeric characters from the Latin
alphabet). Personally, I prefer to use camelCaseStyle²⁸ so this is what
you’re gonna see here.

²⁸https://en.wikipedia.org/wiki/Camel_case

Floats comparisons
Be careful with = sign. In mathematics = means equal to and ≠
means not equal to. In programming = is usually an assignment
operator (see Section  3.3 before). If you want to compare for equality
you should use == (for equal to) and (!= for not equal to), examples:

1 == 1

true

2 == 1
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false

2.0 != 1.0

true

# comparing float (1.0) with integer (1)
1.0 != 1

false

# comparing integer (2) with float (2.0)
2 == 2.0

true

Be careful though because the comparisons of two floats are
sometimes tricky, e.g.

(0.1 * 3) == 0.3

false

The problem here is not Julia (go ahead, try (0.1 * 3) == 0.3 in
another programming language), but computers in general. The result
is false since some floats cannot be represented exactly as binary
numbers (used internally by a computer), just like the fraction 13
cannot be exactly represented in decimal numeral system (13  = 0.333…).
If you are interested in more technical details see this StackOverflow’s
thread²⁹ . Anyway, this is how my computer sees 0.1 * 3:

²⁹https://stackoverflow.com/questions/8604196/why-0-1-3-0-3

0.1 * 3

0.30000000000000004

and 0.3
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0.3

0.3

The same caution applies to other comparison operators, like:

• x > y (x is greater than y),
• x >= y (x is greater than or equal to y),
• x < y (x is less than y),
• x <= y (x is less than or equal to y).

We will see how to deal with the lack of precision in comparisons later
(see Section  3.8.2 ).

Other types
There are also other types (see Julia’s Docs³⁰ ), but we will use mostly
those mentioned in this chapter, i.e.:

³⁰https://docs.julialang.org/en/v1/manual/types/

• floats³¹
• integers³²
• strings³³
• booleans³⁴

³¹https://en.wikipedia.org/wiki/Floating-point_arithmetic
³²https://en.wikipedia.org/wiki/Integer
³³https://en.wikipedia.org/wiki/String_(computer_science)
³⁴https://en.wikipedia.org/wiki/Boolean_data_type

The briefly aforementioned strings contain text of any kind. They are
denoted by (optional type declaration) ::String and you type them
within double quotation marks ("any text"). If you ever want to place
" in a string you need to use \ (backslash) before it [otherwise Julia
will terminate the string on the second " it encounters and throw an
error (because it will be confused by the remaining, stray, characters)].
Moreover, if you wish the text to be displayed in the next line (e.g. in a
figure’s title like the one in Section  4.7.3 ) you should place \n in it.
For instance:
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title = "I enjoy reading\n\"Title of my favorite book\"."
println(title)

Displays:

I enjoy reading
"Title of my favorite book".

on the screen.

A string is composed of individual characters (d’ooh!). An individual
character (type ::Char) is enclosed between single quotation marks.
For instance, 'a', 'b', 'c', …, 'z' (also uppercase) are all individual
characters. Whenever you want to type a single character you got a
choice, either use 'a' (single Char) or "a" (String composed of one
Char). But when typing two or more characters that are ‘glued’
together you must use double quotations ("ab"). In the rest of the book
we will focus mostly on strings, still, a bit more knowledge never hurt
anyone (or did it?). In Solution to exercise 5 from Section  5.8.5 , we
will see how to easily generate a complete alphabet (or a part of it, if
you ever need one) with Chars. If you want to know more about the
Strings³⁵ and Chars³⁶ just click the links to the docs that are to be found
in this sentence.

³⁵https://docs.julialang.org/en/v1/manual/strings/
³⁶https://docs.julialang.org/en/v1/manual/strings/#man-characters

The last of the earlier referenced types (boolean) is denoted as ::Bool
(note that in Julia types’ names by convention start with a capital
letter) and can take only two values: true or false (see the results of
the comparison operations above in Section  3.3.3 ). Bools are often
used in decision making in our programs (see the upcoming Section
3.5 ) and can be used with a small set of logical operators³⁷ like AND
(&&)

³⁷https://docs.julialang.org/en/v1/manual/mathematical-operations/#Boolean-
Operators
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# && returns true only if both values are true
# those return false:
# true && false
# false && true
# false && false
# this returns true:
true && true

true

OR (||)

# || returns true if any value is true
# those return true:
# true || false
# false || true
# true || true
# this returns false:
false || false

false

and NOT (!)

# ! flips the value to the opposite
# returns false: !true
# returns true
!false

true

Collections
Not only do variables may store a single value but they can also store
their collections. The collection types that we will discuss here are
Vector (technically Vector is a one dimensional Array but don’t worry
about that now), Array and struct (it is more like a composite type,
but again at that moment we will not be bothered by that fact).

Vectors

myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]
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[3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

Here I declared a variable that stores my mock grades.

The variable type is Vector of numbers (each of type Float64, run
typeof(myMathGrades) to check it). I could have declared its type
explicitly as ::Vector{Float64}. Instead I decided to let Julia figure it
out.

You can think of a vector as a rectangular cuboid³⁸ box with drawers
(smaller cube³⁹ shaped boxes). The drawers are labeled with

³⁸https://en.wikipedia.org/wiki/Rectangular_cuboid
³⁹https://en.wikipedia.org/wiki/Cube

consecutive numbers (indices) starting at 1 (we will get to that in a
moment). The variable contains 7 grades in it, which you can check by
typing and executing length(myMathGrades).

You can retrieve a single element of the vector by typing
myMathGrades[i] where i is some integer (the aforementioned index).
For instance:

myMathGrades[3] # returns 3rd element

3.5

or

myMathGrades[end] # returns last grade
# equivalent to: myMathGrades[7], but here I don't have to count
elements

3.0

Be careful though, if You type a non-existing index like
myMathGrades[-1], myMathGrades[0] or myMathGrades[10] you will
get an error (e.g. BoundsError: attempt to access 7-element
Vector{Float64} at index [0]).

You can get a slice (a part) of the vector by typing
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myMathGrades[[2, 5]] # returns Vector with 2nd, and 5th element

[3.0, 4.0]

or

myMathGrades[[2, 3, 4]] # returns Vector with 2nd, 3rd, and 4th element

[3.0, 3.5, 2.0]

or simply

myMathGrades[2:4] # returns Vector with three grades (2nd, 3rd, and 4th)
# the slicing is [inclusive:inclusive]

[3.0, 3.5, 2.0]

The 2:4 is Julia’s range⁴⁰ generator, with default syntax start:stop
(both of which are inclusive). Assume that under the hood it generates

⁴⁰https://docs.julialang.org/en/v1/base/math/#Base.range

a vector (check it by using collect⁴¹ function, e.g, just run

⁴¹https://docs.julialang.org/en/v1/base/collections/#Base.collect-Tuple%7BType,%
20Any%7D

collect(2:4)). So, it gives us the same result as writing
myMathGrades[[2, 3, 4]] by hand. However, the range syntax is
more convenient (less typing especially for broad ranges). Now, let’s
say I want to print every other grade out of 100 grades, then I can go
with oneHunderedGrades[1:2:end] and voila, a magic happened
thanks to the start:step:stop syntax (collect(1:2:end) returns a
vector of indices like [1, 3, 5, 7, ..., 97, 99]).

Interestingly, you can also choose elements of a vector by using Bools.

boolIndices = [true, false, true, false, true, false, true]
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Bool[1, 0, 1, 0, 1, 0, 1]

Here, we define a vector composed only of true and false values. The
above are printed in their short form as 1s and 0s, respectively. Now
we may use it to get every other element of myMathGrades (actually
every element for which the index position is true).

myMathGrades[boolIndices]

[3.5, 3.5, 4.0, 3.0]

The above may not look very useful right now (after all we need to
type true/false for every index there is), but once we add a bit more
syntax it becomes a nice way for data filtering (as we will see in
Section  7.5 ).

One last remark, You can change the elements that are in a vector,
e.g. like this:

myMathGrades[1] = 2.0
myMathGrades

[2.0, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

or like that:

myMathGrades[2:3] = [5.0, 5.0]
myMathGrades

[2.0, 5.0, 5.0, 2.0, 4.0, 5.0, 3.0]

Again, remember about proper indexing. What you put inside (right
side) should be compatible with indexing (left side), e.g
myMathGrades[2:3] = [2.0, 2.0, 2.0] will produce an error
(placing 3 numbers to 2 slots).
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Arrays
A Vector is actually a special case of an Array, a multidimensional
structure that holds data. The most familiar (and useful) form of it is a
two-dimensional Array (also called Matrix). It has rows and columns.
Previously, I stored my math grades in a Vector, but most likely I
would like a place to keep my other grades. Here, I create an array that
stores my grades from math (column1) and chemistry (column2).

myGrades = [3.5 3.0; 4.0 3.0; 5.0 2.0]
myGrades

3×2 Matrix{Float64}:
 3.5  3.0
 4.0  3.0
 5.0  2.0

I separated the values between columns with a space character and
indicated a new row with a semicolon. Typing it by hand is not very
interesting, but they come in handy as we will see later in the book.

As with vectors I can use indexing to get specific element(s) from a
matrix, e.g.

myGrades[[1, 3], 2] # returns second column (rows 1 and 3) as Vector

[3.0, 2.0]

or

myGrades[:, 2] # returns second column (and all rows)

[3.0, 3.0, 2.0]

Above, the : symbol (when placed alone) means all indices in a row.

myGrades[1, :] # returns first row (and all columns)
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[3.5, 3.0]

By analogy, here the : symbol (when placed alone) means all indices in
a column.

myGrades[3, 2] # returns a value from third row and second column

2.0

Of course, also Bools may be used for indexing.

myGrades[:, [false, true]] # all rows, second column

3×1 Matrix{Float64}:
 3.0
 3.0
 2.0

Moreover, we can apply the indexing to replace a particular element in
a Matrix. For instance.

myGrades[3, 2] = 5
myGrades

3×2 Matrix{Float64}:
 3.5  3.0
 4.0  3.0
 5.0  5.0

or

myGrades[1:2, 1] = [5, 5]
myGrades

3×2 Matrix{Float64}:
 5.0  3.0
 5.0  3.0
 5.0  5.0
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As with a Vector also here you must pay attention to proper indexing.

When dealing with Arrays (or Vectors which are one dimensional
arrays) one needs to be cautious not to change their contents
accidentally.

In case of atomic variables the values are assigned/passed as copies
(i.e. a new number 3 is put to the box, the old number in the variable x
is unaffected). Observe.

x = 2
y = x # y contains the same value as x
y = 3 # y is assigned a new value, x is unaffected

(x, y)

(2, 3)

Note: The (x, y) returns Tuple (see Tuple in the docs⁴² ) and it is
there to show both x and y in one line. You may think of Tuple as
something similar to Vector but written with parenthesis ()
instead of square brackets []. Additionally, you cannot modify
elements of a tuple after it was created (so, if you got z = (1, 2,
3), then z[2] will work fine (since it just returns an element), but
z[2] = 8 will produce an error). Technically speaking, you could
just type x, y and run the line to get a tuple (test it out), but I
prefer to use parenthesis to be explicit.

⁴²https://docs.julialang.org/en/v1/manual/functions/#Tuples

However, the arrays are assigned/passed as references.

xx = [2, 2]
yy = xx # yy refers to the same box of drawers as xx
yy[1] = 3 # new value 3 is put to the first drawer of the box pointed by
yy

# both xx, and yy are changed, cause both point at the same box of
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drawers
(xx, yy)

([3, 2], [3, 2])

As stated in the comments to the code snippet above, here both xx and
yy variables point at (reference to) the same box of drawers (imagine
the same box of drawers got two labels xx and yy stuck to it next to
each other). So, when we change a value in one drawer, then both
variables reflect the change. If we want to avoid that we can, e.g. make
a copy⁴³ of the Vector/Array like so:

⁴³https://docs.julialang.org/en/v1/base/base/#Base.copy

xx = [2, 2]
# yy refers to a different box of drawers
# with the same (copied) numbers inside
yy = copy(xx)
yy[1] = 3 # this does not affect xx

(xx, yy)

([2, 2], [3, 2])

Structs
Another Julia’s type worth mentioning is struct⁴⁴ . It is a composite
type (so it contains other type(s) inside).

⁴⁴https://docs.julialang.org/en/v1/base/base/#struct

Let’s say I want to have a thing that resembles fractions that we know
from mathematics. It should allow to store the data for numerator and
denominator ( 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ). Let’s use struct for that

struct Fraction
    numerator::Int
    denominator::Int
end

fr1 = Fraction(1, 2)
fr1
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Fraction(1, 2)

Note: By convention Structs’ names start with a capital letter.

If I ever wanted to get a component of the struct I can use the dot
syntax, like so

fr1.numerator

1

Note: If you type fr1. and press TAB key then you should see a
hint with the available field names. You may choose one with
arrow keys and confirm it with Enter key.

or

fr1.denominator

2

Of course, as you probably have guessed, there is no need to define
your own type for fraction since Julia is already equipped with one. It
is called Rational⁴⁵ . For convenience the fraction is written as

⁴⁵https://docs.julialang.org/en/v1/base/numbers/#Base.Rational

1//2 # equivalent to: Rational(1, 2)

1//2

Notice the double slash character (//).

In general, structs are worth knowing. A lot of libraries (see Section
3.7 ) define their own struct objects and we may want to extract their
content using the dot syntax (as we probably sometimes will in the
upcoming sections).
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OK, enough about the variables, time to meet functions.

Functions
Functions are doers, i.e encapsulated pieces of code that do things for
us. Optimally, a function should be single minded, i.e. doing one thing
only and doing it well. Moreover since they do stuff their names
should contain verbs⁴⁶ (whereas variables’ names should be composed
of nouns⁴⁷ ).

⁴⁶https://en.wikipedia.org/wiki/Verb
⁴⁷https://en.wikipedia.org/wiki/Noun

We already met one of many Julia’s built in functions, namely println
(see Section  2.2 ). As the name suggests it prints something (like a
text) to the screen (more precisely standard output⁴⁸ ).

⁴⁸https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

Mathematical functions
We can also define some functions on our own:

function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real
    return lenSideA * lenSideB
end

getRectangleArea (generic function with 1 method)

Here I declared Julia’s version of a mathematical function⁴⁹ . It is called
getRectangleArea and it calculates (surprise, surprise) the area of a
rectangle⁵⁰ .

⁴⁹https://en.wikipedia.org/wiki/Function_(mathematics)
⁵⁰https://en.wikipedia.org/wiki/Rectangle#Formulae

To do that I used the keyword function. The function keyword is
followed by the name of the function (getRectangleArea). Inside the
parenthesis are arguments of the function. The function accepts two
arguments lenSideA (length of one side) and lenSideB (length of the
other side) and calculates the area of a rectangle (by multiplying
lenSideA by lenSideB). Both lenSideA and lenSideB are of type Real.
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It is Julia’s representation of a real number⁵¹ , it encompasses (it’s kind

⁵¹https://en.wikipedia.org/wiki/Real_number

of a supertype), among others, Int and Float64 that we encountered
before. The ending of the first line, )::Real, signifies that the function
will return a value of type Real. The stuff that function returns is
preceded by the return keyword. The function ends with the end
keyword.

Note: A Julia’s function does not need the return keyword since
it returns the result of its last expression. Still, I prefer to be
explicit.

Time to run our function and see how it works.

getRectangleArea(3, 4)

12

getRectangleArea(1.5, 2)

3.0

Note: In some other languages, e.g. Python, you could use the
function like: getRectangleArea(3, 4),
getRectangleArea(lenSideA=3, lenSideB=4) or
getRectangleArea(lenSideB=4, lenSideA=3). However, for
performance reasons (and perhaps due to its Lisp heritage) Julia’s
functions accept arguments in a positional manner. Therefore,
here you may only use getRectangleArea(3, 4) form. Internally,
the first argument (3) will be assigned to the local variable
lenSideA and the second (4) to the local variable lenSideB inside
the getRectangleArea function. Keep that in mind since the
order of the arguments may sometimes make a difference (e.g. if
getRectangleArea relied on division instead of multiplication).
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Hmm, OK, I got getRectangleArea and what if I need to calculate the
area of a square⁵² . You got it.

⁵²https://en.wikipedia.org/wiki/Square#Perimeter_and_area

function getSquareArea(lenSideA::Real)::Real
    return getRectangleArea(lenSideA, lenSideA)
end

getSquareArea (generic function with 1 method)

Note: The argument (lenSideA) of getSquareArea is only known
inside the function. Another function can use the same name for
its arguments and it will not collide with this one. For instance,
getRectangleArea(lenSideA::Real, lenSideB::Real) will
receive the same number twice, which getSquareArea knows as
lenSideA, but getRectangleArea will see only the numbers (it
will receive their copies) and it will name them lenSideA and
lenSideB for its own usage.

Here I can either write its body from scratch (return lendSideA *
lenSideA) or reuse (as I did) our previously defined
getRectangleArea. Lesson to be learned here, functions can use other
functions. This is especially handy if those inner functions are long
and complicated. Anyway, let’s see how it works.

getSquareArea(3)

9

Appears to be working just fine.

A quick reference to the topic we discussed in Section  3.3.1 . Here typing
getRectangleArea("three", "three") will produce an error. Now, I
can spot it right away, read the error’s message and based on that correct
my code so the result is in line with my expectations
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Functions with generics
Now, let’s say I want a function getFirstElt that accepts a vector and
returns its first element (vectors and indexing were briefly discussed in
Section  3.3.5 ).

# works fine for non-empty vectors
function getFirstElt(vect::Vector{Int})::Int
    return vect[1]
end

It looks OK (test it, e.g. getFirstElt([1, 2, 3]). However, the
problem is that it works only with integers (or maybe not, test it out).
How to make it work with any type, like getFirstElt(["Eve",
"Tom", "Alex"]) or getFirstElt([1.1, 2.2, 3.3])?

One way is to declare separate versions of the function for different
types of inputs, i.e.

function getFirstElt(vect::Vector{Int})::Int
    return vect[1]
end

function getFirstElt(vect::Vector{Float64})::Float64
    return vect[1]
end

function getFirstElt(vect::Vector{String})::String
    return vect[1]
end

getFirstElt (generic function with 3 methods)

Note: The function’s name is exactly the same in each case. Julia
will choose the correct version (aka method, see the output of the
code snippet above) based on the type of the argument (vect)
send to the function, e.g. getFirstElt([1, 2, 3]),
getFirstElt([1.1, 2, 3.0]), and getFirstElt(["a", "b",
"c"]) for the three versions above, respectively.
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But that is too much typing (I retyped a few times virtually the same
code). The other way is to use no type declarations.

function getFirstEltVer2(vect)
    return vect[1]
end

It turns out that you don’t have to declare function types in Julia (just
like in the case of variables, see Section  3.3.1 ) and a function may
work just fine.

Still, a die hard ‘typist’ (if I may call a person this way) would probably
use so called generic types, like:

function getFirstEltVer3(vect::Vector{T})::T where T
    return vect[1]
end

Here we said that the vector is composed of elements of type T
(Vector{T}) and that the function will return type T (see )::T). By
typing where T we let Julia know that T is our custom type that we
just made up and it can be any Julia’s built in type whatsoever (but
what it is exactly will be determined once the function is used). We
needed to say where T otherwise Julia would throw an error (since it
wouldn’t be able to find its own built in type T). Anyway, we could
replace T with any other letter (or e.g. two letters) of the alphabet (A, D,
or whatever) and the code would still work.

One last remark, it is customary to write generic types with a single
capital letter. Notice that in comparison to the function with no type
declarations (getFirstEltVer2) the version with generics
(getFirstEltVer3) is more informative. You know that the function
accepts a vector of some elements, and you know that it returns a
value of the same type as the elements that build that vector.
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Of course, that last function we wrote for fun (it was fun for me, how
about you?). In reality Julia already got a function with a similar
functionality (see Base.first⁵³ ).

⁵³https://docs.julialang.org/en/v1/base/collections/#Base.first

Note: Usually functions from Base package, like Base.first
mentioned above, may be used in a shorter form (without the
prefix), i.e. this: first([1, 2, 3, 4]).

Anyway, as I wrote before if you don’t want to use types then don’t,
Julia gives you a choice. When I begun to write my first computer
programs, I preferred to use programming languages that didn’t
require types. However, nowadays I prefer to use them for the reasons
similar to those described in Section  3.3.1 so be tolerant and bear with
me.

Functions operating on structs
Functions may also work on custom types like the ones created with
struct. Do you still remember our Fraction type from Section  3.3.8 ?
I hope so.

Let’s say I want to define a function that adds two fractions. I can
proceed like so

function add(f1::Fraction, f2::Fraction)::Fraction
    newDenom::Int = f1.denominator * f2.denominator
    f1NewNom::Int = newDenom / f1.denominator * f1.numerator
    f2NewNom::Int = newDenom / f2.denominator * f2.numerator
    newNom::Int = f1NewNom + f2NewNom
    return Fraction(newNom, newDenom)
end

add(Fraction(1, 3), Fraction(2, 6))

Fraction(12, 18)
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Note: The variables newDenom, f1NewNom, f2NewNom, newNom are
local, e.g. they are created and exist only inside the function when
it is called (like here with add(Fraction(1, 3), Fraction(2,
6))) and do not affect the variables outside the function even if
they happened to have the same names.

Works correctly, but the addition algorithm is not optimal (for now
you don’t have to worry too much about the function’s hairy
internals). Luckily the built in Rational type (Section  3.3.8 ) is more
polished. Observe

# equivalent to: Rational(1, 3) + Rational(2, 6)
1//3 + 2//6

2//3

Much better (1218 =
12/6
18/6 =

2
3 ). Of course also other operations like

subtraction, multiplication and division work for Rational.

We will meet some functions operating on structs when we use
custom made libraries like HypothesisTests (abbreviated Ht),
e.g. Ht.pvalue that works on the object (struct) returned by
Ht.OneWayANOVATest (see the upcoming Section  5.5 ). Again, for now
don’t worry about it too much.

Functions modifying arguments
Previously (see Section  3.3.5 ) we said that we can change elements of
a vector. Sometimes even unintentionally, because, e.g. we may forget
that Arrayss/Vectors are assigned/passed by references (as mentioned
in Section  3.3.7 ).

function wrongReplaceFirstElt(
    ints::Vector{Int}, newElt::Int)::Vector{Int}
    ints[1] = newElt
    return ints
end

xx = [2, 2]
yy = wrongReplaceFirstElt(xx, 3)
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# unintentionally we changed xx defined outside a function
(xx, yy)

([3, 2], [3, 2])

Let’s try to re-write the function that changes the first element
improving upon it at the same time.

# the function works fine for non-empty vectors
function replaceFirstElt!(vect::Vector{T}, newElt::T) where T
    vect[1] = newElt
    return nothing
end

Note: The function’s name ends with ! (exclamation mark). This is
one of the Julia’s conventions to mark a function that modifies its
arguments.

In general, you should try to write a function that does not modify its
arguments (as modification often causes errors, especially in big
programs). However, such modifications are sometimes useful,
therefore Julia allows you to do so, but you should always be explicit
about it. That is why it is customary to end the name of such a
function with ! (exclamation mark draws attention).

Additionally, observe that T can be of any type, but we require newElt
to be of the same type as the elements in vect. Moreover, since we
modify the arguments we wrote return nothing (to be explicit we do
not return a thing) and removed returned type after the function’s
name, i.e. we used [) where T instead of )::Vector{T} where T].

Let’s see how the function works.

x = [1, 2, 3]
y = replaceFirstElt!(x, 4)
(x, y)
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([4, 2, 3], nothing)

Let me finish this subsection by mentioning a classical example of a
built-in function that modifies its argument. The function is push!⁵⁴ . It
adds elements to a collection (e.g. Arrays, or Vectors). Observe:

⁵⁴https://docs.julialang.org/en/v1/base/collections/#Base.push!

xx = [] # empty vector
push!(xx, 1, 2) # now xx is [1, 2]
push!(xx, 3) # now xx is [1, 2, 3]
push!(xx, 4, 5) # now xx is [1, 2, 3, 4, 5]

I mentioned it since that was my favorite way of constructing a vector
(to start with an empty vector and add elements one by one with a for
loop that we will meet in Section  3.6.1 ) back in the day when I started
my programming journey. Nowadays I do it a bit differently, but I
thought it would be good to mention it in case you find it useful while
solving some exercises from this book.

Side Effects vs Returned Values
Notice that so far we encountered two types of Julia’s functions:

• those that are used for their side effects (like println)
• those that return some results (like getRectangleArea)

The difference between the two may not be clear while we use the
interactive mode. To make it more obvious let’s put them in the script
like so:

# file: sideEffsVsReturnVals.jl

# you should define a function before you call it
function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real
    return lenSideA * lenSideB
end

println("Hello World!")

getRectangleArea(3, 2) # calling the function
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After running the code from terminal:

cd folder_with_the_sideEffsVsReturnVals.jl
julia sideEffsVsReturnVals.jl

I got printed on the screen:

Hello World!

That’s it. I got only one line of output, the rectangle area seems to be
missing. We must remember that a computer does only what we tell it
to do, nothing more, nothing less. Here we said:

• print “Hello World!” to the screen (actually standard output⁵⁵ )
• calculate and return the area of the rectangle (but we did nothing

with it)

⁵⁵https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

In the second case the result went into the void (“If a tree falls in a
forest and no one is around to hear it, does it make a sound?”).

If we want to print both pieces of information on the screen we should
modify our script to look like:

# file: sideEffsVsReturnVals.jl

# you should define a function before you call it
function getRectangleArea(lenSideA::Real, lenSideB::Real)::Real
    return lenSideA * lenSideB
end

println("Hello World!")

# println takes 0 or more arguments (separated by commas)
# if necessary arguments are converted to strings and printed
println("Rectangle area = ", getRectangleArea(3, 2), " [cm^2]")

Now when we run julia sideEffsVsReturnVals.jl from terminal,
we get:
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Hello World!
Rectangle area = 6 [cm^2]

More information about functions can be found, e.g.  in this section of
Julia’s Docs⁵⁶ .

⁵⁶https://docs.julialang.org/en/v1/manual/functions/

If you ever encounter a built in function that you don’t know, you may
always search for it in the docs⁵⁷ (search box: top left corner of the
page).

⁵⁷https://docs.julialang.org/en/v1/

Decision Making
In everyday life people have to make decisions and so do computer
programs. This is the job for if ... elseif ... else constructs.

If …, or Else …
To demonstrate decision making in action let’s say I want to write a
function that accepts an integer as an argument and returns its textual
representation. Here we go.

function turnInt2string(num::Int)::String
    if num <= 0
        return "zero or less"
    elseif num == 1
        return "one"
    elseif num == 2
        return "two"
    else
        return "three or above"
    end
end

(turnInt2string(2), turnInt2string(5)) # a tuple with results

("two", "three or above")

The general structure of the construct goes like this:
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# pseudocode, don't run this snippet
if (condition_that_returns_Bool)
    what_to_do
elseif (another_condition_that_returns_Bool)
    what_to_do
elseif (another_condition_that_returns_Bool)
    what_to_do
else
    what_to_do
end

As mentioned in Section  3.3.4 Bool type can take one of two values
true or false. The code inside if/elseif clause runs only when the
condition is true. You can have any number of elseif clauses. Only
the code for the first true clause runs. If none of the previous
conditions matches (each and every one is false) the code in the else
block is executed. Only if and end keywords are obligatory, the rest is
not, so you may use

# pseudocode, don't run this snippet
if (condition_that_returns_Bool)
    what_to_do
end

or

# pseudocode, don't run this snippet
if (condition_that_returns_Bool)
    what_to_do
else
    what_to_do
end

or

# pseudocode, don't run this snippet
if (condition_that_returns_Bool)
    what_to_do
elseif (condition_that_returns_Bool)
    what_to_do
else
    what_to_do
end
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or

# pseudocode, don't run this snippet
if (condition_that_returns_Bool)
    what_to_do
elseif (condition_that_returns_Bool)
    what_to_do
elseif (condition_that_returns_Bool)
    what_to_do
else
    what_to_do
end

or …, never mind, I think you got the point.

Below I place another example of a function using if/elseif/else
construct (in order to remember it better).

# works fine for non-empty vectors
function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
    if isSortedAsc
        return vect[1]
    else
        sortedVect::Vector{Int} = sort(vect)
        return sortedVect[1]
    end
end

x = [1, 2, 3, 4]
y = [3, 4, 1, 2]

(getMin(x, true), getMin(y, false))

(1, 1)

Here I wrote a function that finds the minimal value in a vector of
integers. If the vector is sorted in the ascending order it returns the
first element. If it is not, it sorts the vector using the built in sort⁵⁸ 

⁵⁸https://docs.julialang.org/en/v1/base/sort/#Base.sort

function and returns its first element (this may not be the most efficient
method but it works). Note that the else block contains two lines of
code (it could contain more if necessary, and so could if block). I did
this for demonstrative purposes. Alternatively instead those two lines
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(in the else block) one could write return sort(vect)[1] and it
would work just fine.

Ternary expression
If you need only a single if ... else in your code, then you may
prefer to replace it with ternary operator. Its general form is
condition_or_Bool ? result_if_true : result_if_false.

Let me rewrite getMin from Section  3.5.1 using ternary expression.

function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
    return isSortedAsc ? vect[1] : sort(vect)[1]
end

x = [1, 2, 3, 4]
y = [3, 4, 1, 2]

(getMin(x, true), getMin(y, false))

(1, 1)

Much less code, works the same. Still, I would not overuse it. For more
than a single condition it is usually harder to write, read, and process
in your head than the good old if/elseif/else block.

Dictionaries
Dictionaries in Julia⁵⁹ are a sort of mapping. Just like an ordinary
dictionary is a mapping between a word and its definition. Here, we

⁵⁹https://docs.julialang.org/en/v1/base/collections/#Dictionaries

say that the mapping is between key and value. For instance let’s say I
want to define an English-Polish dictionary.

engPolDict::Dict{String, String} = Dict("one" => "jeden", "two" =>
"dwa")
engPolDict # the key order is not preserved on different computers

Dict{String, String} with 2 entries:
  "two" => "dwa"
  "one" => "jeden"
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Here I defined a dictionary of type Dict{String, String}, so, both
key and value are of textual type (String). The order of the keys is not
preserved (this data structure cares more about lookup performance
and not about the order of the keys). Therefore, you may see a
different order of items after executing the code on your computer.

If we want to now how to say “two” in Polish I type aDict[key] (if the
key is not there you will get an error), e.g.

engPolDict["two"]

dwa

To add a new value to a dictionary (or to update the existing value)
write aDict[key] = newVal. Right now the key “three” does not exist
in engPolDict so I would get an error (check it out), but if I type:

engPolDict["three"] = "trzy"

trzy

Then I create (or update if it was already there) a key-value mapping.

Now, to avoid getting errors due to non-existing keys I can use the
built in get⁶⁰ function. You use it in the form get(collection, key,

⁶⁰https://docs.julialang.org/en/v1/base/collections/#Base.get

default), e.g. right now the word “four” (key) is not in a dictionary so
I should get an error (check it out). But wait, there is get.

get(engPolDict, "four", "not found")

not found

OK, what anything of it got to do with if/elseif/else and decision
making. The thing is that if you got a lot of decisions to make then
probably you will be better off with a dictionary. Compare
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function translEng2polVer1(engWord::String)::String
    if engWord == "one"
        return "jeden"
    elseif engWord == "two"
        return "dwa"
    elseif engWord == "three"
        return "trzy"
    elseif engWord == "four"
        return "cztery"
    else
        return "not found"
    end
end

(translEng2polVer1("three"), translEng2polVer1("ten"))

("trzy", "not found")

with

function translEng2polVer2(engWord::String,
                           aDict::Dict{String, String} =
engPolDict)::String
    return get(aDict, engWord, "not found")
end

(translEng2polVer2("three"), translEng2polVer2("twelve"))

("trzy", "not found")

Note: Dictionaries like Arrays (see Section  3.3.7 ) are passed by
references

In translEng2polVer2 I used a so called optional argument⁶¹ for aDict
(aDict::Dict{String, String} = engPolDict). This means that if

⁶¹https://docs.julialang.org/en/v1/manual/functions/#Optional-Arguments

the function is provided without the second argument then
engPolDict will be used as its second argument. If I defined the
function as translEng2polVer2(engWord::String,
aDict::Dict{String, String}) then while running the function I
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would have to write (translEng2polVer2("three", engPolDict),
translEng2polVer2("twelve", engPolDict)). Of course, I may
prefer to use some other English-Polish dictionary (perhaps the one
found on the internet) like so translEng2polVer2("three",
betterEngPolDict) instead of using the default engPolDict we got
here.

In general, the more if ... elseif ... else comparisons you got to
do the better off you are when you use dictionaries (especially that they
could be written by someone else, you just use them). Still, in the rest of
the book we will probably use dictionaries for data storage and a quick
lookup.

OK, enough of that. If you want to know more about conditional
evaluation check this part of Julia’s docs⁶² .

⁶²https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-
evaluation

Repetition
Julia, and computers in general, are good at doing boring, repetitive
tasks for us without a word of complaint (and they do it much faster
than we do). Let’s see some constructs that help us with it.

For loops
A for loop⁶³ is a standard construct present in many programming
languages that does the repetition for us. Its general form in Julia is:

⁶³https://en.wikipedia.org/wiki/For_loop

# pseudocode, do not run this snippet
for i in sequence
    # do_something_useful
end

The loop is enclosed between for and end keywords and repeats some
specific action(s) (# do_something_useful) for every element of a
sequence. On each turnover of a loop consecutive elements of a
sequence are referred to by i.
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Note: I could have assigned any name, like: j, k, whatever, it
would work the same. Still, i and j are quite common in for
loops⁶⁴ .

⁶⁴https://en.wikipedia.org/wiki/For_loop

Let’s say I want a program that will print hip hip hooray⁶⁵ many times
for my friend that celebrates some success. I can proceed like this.

⁶⁵https://en.wikipedia.org/wiki/Hip_hip_hooray

function printHoorayNtimes(n::Int)
    @assert (n > 0) "n needs to be greater than 0"
    for _ in 1:n
        println("hip hip hooray!")
    end
    return nothing
end

Go ahead, run it (e.g. printHoorayNtimes(3)).

Notice two new elements. Here it makes no sense for n to be less than
or equal to 0. Hence, I used @assert⁶⁶ construct to test it and print an

⁶⁶https://docs.julialang.org/en/v1/base/base/#Base.@assert

error message ("n needs to be greater than 0") if it is. The
construct is not recommended in serious programs, but for our quick
and dirty approach it should do the trick. The 1:n is a range similar to
the one we used in Section  3.3.6 . Here, I used _ instead of i in the
example above (to signal that I don’t plan to use it further).

OK, how about another example. You remember myMathGrades, right?

myMathGrades = [3.5, 3.0, 3.5, 2.0, 4.0, 5.0, 3.0]

Now, since the end of the school year is coming then I would like to
know my average⁶⁷ (likely this will be my final grade). In order to get
that I need to divide the sum by the number of grades. First the sum.

⁶⁷https://en.wikipedia.org/wiki/Arithmetic_mean

function getSum(nums::Vector{<:Real})::Real
    total::Real = 0
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    for i in 1:length(nums)
        total = total + nums[i]
    end
    return total
end

getSum(myMathGrades)

24.0

A few explanations regarding the new bits of code here.

In the arguments list I wrote ::Vector{<:Real}. Which means that
each element of nums is a subtype (<:) of the type Real (which
includes integers and floats). I declared a total and initialized it to 0.
Then in for loop I used i to hold numbers from 1 to number of
elements in the vector (length(nums)). Finally, in the for loop body I
added each number from the vector (using indexing see Section  3.3.6 )
to the total. The total = total + nums[i] means that new total is
equal to old total + element of the vector (nums) with index i
(nums[i]). Finally, I returned the total.

The body of the for loop could be improved. Instead of for i in
1:length(nums) I could have written for i in eachindex(nums)
(notice there is no 1:, eachindex is a built in Julia function, see here⁶⁸ ).

⁶⁸https://docs.julialang.org/en/v1/base/arrays/#Base.eachindex

Moreover, instead of total = total + nums[i] I could have used
total += nums[i]. The += is and update operator⁶⁹ , i.e. a shortcut for

⁶⁹https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-
operators

updating old value by adding a new value to it. Take a moment to
rewrite the function with those new forms and test it.

Note: The update operator must be written as accumulator +=
updateValue (e.g. total += 2) and not accumulator =+
updateValue (e.g. total =+ 2). In the latter case Julia will asign
updateValue (+2) as a new value of accumulator [it will interpret
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=+ 2 as assign (=) plus/positive two (+2) instead of update (+=) by
2].

Alternatively, I can do this without indexing (although for loops with
indexing are a classical idiom in programming and it is worth to know
them).

function getSum(nums::Vector{<:Real})::Real
    total::Real = 0
    for num in nums
        total += num
    end
    return total
end

getSum(myMathGrades)

24.0

Here num (I could have used n, i or whatever if I wanted to) takes the
value of each consecutive element of nums and adds it to the total.

OK, and now back to the average⁷⁰ .

⁷⁰https://en.wikipedia.org/wiki/Arithmetic_mean

function getAvg(nums::Vector{<:Real})::Real
    return getSum(nums) / length(nums)
end

getAvg(myMathGrades)

3.4285714285714284

Ups, not quite 3.5, I’ll better present some additional projects to
improve my final grade.

OK, two more examples that might be useful and will help you master
for loops even better.

Let’s say I got a vector of temperatures in Celsius⁷¹ and want to send it
to a friend in the US.

⁷¹https://en.wikipedia.org/wiki/Celsius
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temperaturesCelsius = [22, 18.3, 20.1, 19.5]

[22.0, 18.3, 20.1, 19.5]

To make it easier for him I should probably change it to Fahrenheit⁷² 
using this formula⁷³ . I start with writing a simple converting function
for a single value of the temperature in Celsius scale.

⁷²https://en.wikipedia.org/wiki/Fahrenheit
⁷³https://en.wikipedia.org/wiki/Fahrenheit#Conversion_(specific_temperature_

point)

function degCels2degFahr(tempCels::Real)::Real
    return tempCels * 1.8 + 32
end

degCels2degFahr(0)

32.0

Now let’s convert the temperatures in the vector. First I would try
something like this:

function degCels2degFahr!(tempsCels::Vector{<:Real})
    for i in eachindex(tempsCels)
        tempsCels[i] = degCels2degFahr(tempsCels[i])
    end
    return nothing
end

Notice the ! in the function name (don’t remember what it mean? see
here⁷⁴ ).

⁷⁴https://docs.julialang.org/en/v1/manual/style-guide/#bang-convention

Still, this is not good. If I use it (degCels2degFahr!
(temperatureCelsius)) it will change the values in
temperaturesCelsius to Fahrenheit which could cause problems
(variable name doesn’t reflect its contents). A better approach is to
write a function that produces a new vector and doesn’t change the
old one.
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function degCels2degFahr(tempsCels::Vector{<:Real})::Vector{<:Real}
    result::Vector{<:Real} = zeros(length(tempsCels))
    for i in eachindex(tempsCels)
        result[i] = degCels2degFahr(tempsCels[i])
    end
    return result
end

degCels2degFahr (generic function with 2 methods)

Now I can use it like that:

temperaturesFahrenheit = degCels2degFahr(temperaturesCelsius)

[71.6, 64.94, 68.18, 67.1]

First of all, notice that so far I defined two functions named
degCels2degFahr. One of them has got a single value as an argument
(degCels2degFahr(tempCels::Real)) and another a vector as its
argument (degCels2degFahr(tempsCels::Vector{<:Real})). But
since I explicitly declared argument types, Julia will know when to use
each version based on the function’s arguments (see next paragraph).
The different function versions are called methods (hence the message:
degCels2degFahr (generic function with 2 methods) under the
code snippet above).

In the body of degCels2degFahr(tempsCels::Vector{<:Real}) first I
declare and initialize a variable that will hold the result (hence
result). I do this using built in zeros⁷⁵ function. The function returns a

⁷⁵https://docs.julialang.org/en/v1/base/arrays/#Base.zeros

new vector with n elements (where n is equal to length(tempsCels))
filled with, you got it, 0s. The 0s are just placeholders. Then, in the for
loop, I go through all the indices of result (i holds the current index)
and replace each zero (result[i]) with a corresponding value in
Fahrenheit (degCels2degFahr(tempsCels[i])). Here, since I pass a
single value (tempsCels[i]) Julia knows which version (aka method)
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of the function degCels2degFahr to use (i.e. this one
degCels2degFahr(tempCels::Real)).

For loops can be nested⁷⁶ (even a few times). This is useful, e.g. when
iterating over every call in an array (we met arrays in Section  3.3.7 ).
We will use nested loops later in the book (e.g. in Section  6.8.2 ).

⁷⁶https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Nested_
loops

OK, enough for the classic for loops. Let’s go to some built in goodies
that could help us out with repetition.

Built-in Goodies
If the operation you want to perform is simple enough you may prefer
to use some of the Julia’s goodies mentioned below.

Comprehensions
Another useful constructs are comprehensions⁷⁷ .

⁷⁷https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions

Let’s say this time I want to convert inches to centimeters using this
function.

function inch2cm(inch::Real)::Real
    return inch * 2.54
end

inch2cm(1)

2.54

If I want to do it for a bunch of values I can use comprehensions like
so.

inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
    return [inch2cm(inch) for inch in inches]
end

inches2cms(inches)
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[25.4, 50.8, 76.2]

On the right I use the familiar for loop syntax, i.e. for sth in
collection. On the left I place a function (named or anonymous⁷⁸ )

⁷⁸https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions

that I want to use (here inch2cm) and pass consecutive elements (sth,
here inch) to that function. The expression is surrounded with square
brackets so that Julia makes a new vector out of it (the old vector is
not changed).

In general comprehensions are pretty useful, chances are that I’m going to
use them a lot in this book so make sure to learn them (e.g. read their
description in the link at the beginning of this subchapter, i.e. Section
3.6.3 or look at the examples shown here⁷⁹ ).

⁷⁹https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#
Comprehensions

Map and Foreach
Comprehensions are nice, but some people find map⁸⁰ even better. The
example above could be rewritten as:

⁸⁰https://docs.julialang.org/en/v1/base/collections/#Base.map

inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
    return map(inch2cm, inches)
end

inches2cms(inches)

[25.4, 50.8, 76.2]

Again, I pass a function (note I typed only its name) as a first
argument to map, the second argument is a collection. Map
automatically applies the function to every element of the collection
and returns a new collection. Isn’t this magic.
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If you want to evoke a function on a vector just for side effects (since
you don’t need to build a vector and return it) use foreach⁸¹ . For

⁸¹https://docs.julialang.org/en/v1/base/collections/#Base.foreach

instance, getSum with foreach and an anonymous function would look
like this

function getSum(vect::Vector{<:Real})::Real
    total::Real = 0
    foreach(x -> total += x, vect) # side effect is to increase total
    return total
end

getSum([1, 2, 3, 4])

10

Here, foreach will perform an action (its first argument) on each
element of its second argument (vect). The first argument (x -> total
+= x) is an anonymous function⁸² that takes some value x and in its

⁸²https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions

body (-> points at the body) adds x to total (total += x). The x takes
each value of vect (second argument).

Note: Anonymous functions will be used quite a bit in this book,
so make sure you understand them (read their description in the
link above or look at the examples shown here⁸³ ).

⁸³https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Anonymous_
functions

Dot operators/functions
Last but not least. I can use a dot operator⁸⁴ . Say I got a vector of
numbers and I want to add 10 to each of them. Doing this for a single

⁸⁴https://docs.julialang.org/en/v1/manual/mathematical-operations/#man-dot-
operators

number is simple, I would have just typed 1 + 10. Hmm, but for a
vector? Simple as well. I just need to precede the operator with a . like
so:
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[1, 2, 3] .+ 10

[11, 12, 13]

I can do this also for functions (both built-in and written by myself).
Notice . goes before (

inches = [10, 20, 30]

function inches2cms(inches::Vector{<:Real})::Vector{<:Real}
    return inch2cm.(inches)
end

inches2cms(inches)

[25.4, 50.8, 76.2]

Isn’t this nice.

OK, the goodies are great, but require some time to get used to them (I
suspect at first you’re gonna use good old for loop syntax). Besides
the constructs described in this section are good for simple operations
(don’t try to put too much stuff into them, they are supposed to be one
liners).

In any case choose a construct that you know how to use and that gets
the job done for you, mastering them all will take some time.

Still, in general dot operations are pretty useful, chances are that I’m
going to use them a lot in this book so make sure to understand them.

Additional libraries
OK, there is one more thing I want to briefly talk about, and it is
libraries⁸⁵ (sometimes called packages).

⁸⁵https://en.wikipedia.org/wiki/Library_(computing)

A library is a piece of code developed by someone else. At the time I’m
writing these words there are over 10’000 libraries (aka packages) in
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Julia ( see here⁸⁶ ) available under different licenses. If the package is

⁸⁶https://julialang.org/packages/

under MIT license⁸⁷ (a lot of them are) then basically you may use it
freely, but without any warranty.

⁸⁷https://en.wikipedia.org/wiki/MIT_License

To install a package you use Pkg⁸⁸ , i.e. Julia’s built in package manager.
Click the link in the previous sentence to see how to do it (be aware
that installation may take some time).

⁸⁸https://docs.julialang.org/en/v1/stdlib/Pkg/

In general there are two ways to use a package in your project:

1. by typing using Some_pkg_name
2. by typing import Some_pkg_name

Personally, I prefer the latter. Actually, I use it in the form import
Some_pkg_name as Abbreviated_pkg_name (you will see why in a
moment).

Let’s see how it works. Remember the getSum and getAvg functions
that we wrote ourselves. Well, it turns out Julia got a built-in sum⁸⁹ and

⁸⁹https://docs.julialang.org/en/v1/base/collections/#Base.sum

Statistics⁹⁰ package got a mean⁹¹ function. To use it I type at the top of
my file (it is a good practice to do so):

⁹⁰https://docs.julialang.org/en/v1/stdlib/Statistics/
⁹¹https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean

import Statistics as Stats

Now I can access any of its functions by preceding them with Stats
(my abbreviation) and . like so

Stats.mean([1, 2, 3])

2.0

And that’s it. It just works.
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Note that if you type import Statistics instead of import
Statistics as Stats then in order to use mean you will have to type
Statistics.mean([1, 2, 3]). So in general it is a good idea to give
some shorter name for an imported package.

Oh yeah, one more thing. In order to know what are the functions in a
library and how to use them you should check the library’s
documentation.

OK, enough theory, time for some practice.

Julia - Exercises
I once heard that in chess you can get only as much as you give. I
believe it is also true for programming (and most likely many other
human activities).

So, here are some exercises that you may want to solve to get from this
chapter as much as you can.

Note: Some readers probably will not solve the exercises. They
will not want to (because of the waste of time) or will not be able
to solve them (in that case my apology for the inappropriate
difficulty level). Either way, I suggest you read the tasks’
descriptions and the solutions (and try to understand them). In
those sections I may use, e.g. some language constructs that I will
not explain again in the upcoming chapters.

Exercise 1
Imagine the following situation. You and your friends make a call to
order out a pizza. You got only $50 and you are pretty hungry. But you
got a dilemma, for exactly $50 you can either order 2 pizzas 30 cm in
diameter each, or 1 pizza 45 cm in diameter. Which one is more worth
it?

Hint: Assume that the pizza is flat and that you are eating its surface.
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Hint: You may want to search the documentation⁹² for
Base.MathConstants and use one of them.

⁹²https://docs.julialang.org/en/v1/

Exercise 2
When we talked about float comparisons (Section  3.3.3 ) we said to be
careful since

(0.1 * 3) == 0.3

false

Write a function with the following signature
areApproxEqual(f1::Float64, f2::Float64)::Bool. It should return
true when called with those numbers (areApproxEqual(0.1*3, 0.3)).
For the task you may use round⁹³ with a precision of, let’s say, 16
digits.

⁹³https://docs.julialang.org/en/v1/base/math/#Base.round-Tuple%7BComplex%7
B%3C:AbstractFloat%7D,%20RoundingMode,%20RoundingMode%7D

Note: Probably there is no point of greater precision than 16
digits since your machine won’t be able to see it anyway. For
technical details see Base.eps⁹⁴ .

⁹⁴https://docs.julialang.org/en/v1/base/base/#Base.eps-Tuple%7BType%7B%3C:
AbstractFloat%7D%7D

Exercise 3
Remember getMin from previous chapter (see Section  3.5.2 )

function getMin(vect::Vector{Int}, isSortedAsc::Bool)::Int
    return isSortedAsc ? vect[1] : sort(vect)[1]
end

Write getMax with the following signature
getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int use only
the elements from previous version of the function (you should modify
them).
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Exercise 4
Someone once told me that the simplest interview question for a
candidate programmer is fizz buzz⁹⁵ . If a person doesn’t know how to
do that there is no point of examining them further.

⁹⁵https://en.wikipedia.org/wiki/Fizz_buzz

I don’t know if that’s true, but here we go.

Write a program for a range of numbers 1 to 30.

• If a number is divisible by 3 print “Fizz” on the screen.
• If a number is divisible by 5 print “Buzz” on the screen.
• If a number is divisible by 3 and 5 print “Fizz Buzz” on the screen.
• Otherwise print the number itself.

If you feel stuck right now, don’t worry. It sounds difficult, because so
far you haven’t met all the necessary elements to solve it. Still, I
believe you can do this by reading the Julia’s docs or using your
favorite web search engine.

Here are some constructs that might be useful to solve this task:

• for loop (see Section  3.6.1 )
• if/elseif/else (see Section  3.5.1 )
• modulo operator or rem function⁹⁶
• ‘logical and’ (see Section  3.3.4 and this⁹⁷ and that⁹⁸ section of Julia’s

docs)
• string function⁹⁹

⁹⁶https://docs.julialang.org/en/v1/base/math/#Base.rem
⁹⁷https://docs.julialang.org/en/v1/manual/missing/#Logical-operators
⁹⁸https://docs.julialang.org/en/v1/manual/missing/#Control-Flow-and-Short-

Circuiting-Operators
⁹⁹https://docs.julialang.org/en/v1/base/strings/#Base.string

You may use some or all of them. Or perhaps you can come up with
something else. Good luck.

Exercise 5
I once heard a story about chess.
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According to the story the game was created by a Hindu wise man. He
presented the invention to his king who was so impressed that he
offered to fulfill his request as a reward.

• I want nothing but some wheat grains.
• How many?
• Put 1 grain on the first chess field, 2 grains on the second, 4 on the

third, 8 on the fourth, and so on. I want the grains that are on the
last field.

A laughingly small request, thought the king. Or is it?

Use Julia to answer how many grains are on the last (64th) field.

Hint. If you get a strange looking result, use BigInt¹⁰⁰ data type instead of
Int¹⁰¹ .

¹⁰⁰https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts
¹⁰¹https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#

Integers

Exercise 6
Lastly, to cool down a little write a function getInit that takes a
vector of any type as an argument and returns the vector without its
last element.

You may either use the generics (preferred way to solve it, see Section
3.4.2 ) or write the function without type declarations (acceptable
solution).

Remember about the indexing (see Section  3.3.6 ). Think (or search for
the answer e.g. in the internet) how to get one but last element of an
array.

Usage examples:

getInit([1, 2, 3, 4])
# output: [1, 2, 3]

getInit(["ab", "cd", "ef", "gh"])
# output: ["ab", "cd", "ef"]
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getInit([3.3])
# output: Float64[]

getInit([])
# output: Any[]

Julia - Solutions
In this sub-chapter you will find exemplary solutions to the exercises
from the previous section.

Solution to Exercise 1
Since I’m eating a surface, and the task description gives me diameters,
then I should probably calculate area of a circle¹⁰² . I will use
Base.MathConstants.pi¹⁰³ in my calculations.

¹⁰²https://en.wikipedia.org/wiki/Area_of_a_circle
¹⁰³https://docs.julialang.org/en/v1/base/numbers/#Base.MathConstants.pi

function getCircleArea(radius::Real)::Real
    return pi * radius * radius
end

Now, we can finally get the answer.

# radius = diameter / 2
(getCircleArea(30/2) * 2, getCircleArea(45/2))

(1413.7166941154069, 1590.431280879833)

It seems that I will get more food while ordering this one pizza (45 cm
in diameter) and not those two pizzas (each 30 cm in diameter).

Note: Instead of pi * radius * radius I could have used
radius^2, where ^ is an exponentiation operator in Julia. If I want
to raise 2 to the fourth power I can either type 2^4 or 2*2*2*2
and get 16.
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If all the pizzas were cylinders¹⁰⁴ of equal heights (say 2 cm or an inch
each) then I would calculate their volumes like so

¹⁰⁴https://en.wikipedia.org/wiki/Cylinder

function getCylinderVolume(radius::Real, height::Real=2)::Real
    # hmm, is cylinder just many circles stacked one on another?
    return getCircleArea(radius) * height
end

and the results

# radius = diameter / 2
(getCylinderVolume(30/2) * 2, getCylinderVolume(45/2))

(2827.4333882308138, 3180.862561759666)

Still, it appears the conclusion is the same.

Solution to Exercise 2
My solution to that problem would look something like

function areApproxEqual(f1::Float64, f2::Float64)::Bool
    return round(f1, digits=16) == round(f2, digits=16)
end

Let’s put it to the test

areApproxEqual(0.1*3, 0.3)

true

Seems to be working fine. Still, you may prefer to use Julia’s built-in
isapprox¹⁰⁵ . In general, it is a good idea to use a built in function from
the standard library over your own as it should be more robust¹⁰⁶ .

¹⁰⁵https://docs.julialang.org/en/v1/base/math/#Base.isapprox
¹⁰⁶https://en.wikipedia.org/wiki/Robustness_(computer_science)

Anyway, let’s test isapprox as well.
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isapprox(0.1*3, 0.3)
# compare with
# isapprox(0.11*3, 0.3)
# or to test if the values are not equal
# !isapprox(0.11*3, 0.3)

true

It works just fine.

Lesson to be learned here. If you want to do something you can:

1. look for a function in the language documentation
2. look for a function in some library
3. write a function yourself by using what you already got at your

disposal

Solution to Exercise 3
Possible solution

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
    return isSortedDesc ? vect[1] : sort(vect)[end]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)

or if you read the documentation for sort¹⁰⁷

¹⁰⁷https://docs.julialang.org/en/v1/base/sort/#Base.sort

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
    return isSortedDesc ? vect[1] : sort(vect, rev=true)[1]
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)

57



Sorting an array to get the maximum (or minimum) value is not the
most effective method (sorting is based on rearranging elements and
takes quite some time). Traveling through an array only once should
be faster. Therefore probably a better solution (in terms of
performance) would be something like

function getMaxUnsorted(unsortedVect::Vector{Int})::Int
    maxVal::Int = unsortedVect[1]
    for elt in unsortedVect[2:end]
        if maxVal < elt
            maxVal = elt
        end
    end
    return maxVal
end

function getMax(vect::Vector{Int}, isSortedDesc::Bool)::Int
    return isSortedDesc ? vect[1] : getMaxUnsorted(vect)
end

(getMax([3, 2, 1], true), getMax([2, 3, 1], false))

(3, 3)

Read it carefully and try to figure out how it works.

Note: Julia already got similar functionality to getMin, getMax
that we developed ourselves. See min¹⁰⁸ , max¹⁰⁹ , minimum¹¹⁰ , and
maximum¹¹¹ .

¹⁰⁸https://docs.julialang.org/en/v1/base/math/#Base.min
¹⁰⁹https://docs.julialang.org/en/v1/base/math/#Base.max
¹¹⁰https://docs.julialang.org/en/v1/base/collections/#Base.minimum
¹¹¹https://docs.julialang.org/en/v1/base/collections/#Base.maximum

Solution to Exercise 4
Perhaps the most direct version of the program would be

function printFizzBuzz()
    for i in 1:30
        # or: if rem(i, 15) == 0
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        if rem(i, 3) == 0 && rem(i, 5) == 0
            println("Fizz Buzz")
        elseif rem(i, 3) == 0
            println("Fizz")
        elseif rem(i, 5) == 0
            println("Buzz")
        else
            println(i)
        end
    end
    return nothing
end

Note: Julia applies operators based on precedence and
associativity¹¹² . If you are unsure about the order of their
evaluation (e.g. in if rem(i, 3) == 0 && rem(i, 5) == 0) then
check the docs or use parenthesis () to enforce the desired order
of evaluation (e.g. if (rem(i, 3) == 0) && (rem(i, 5) == 0)).

¹¹²https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-
Precedence-and-Associativity

Go ahead, test it out.

If you like challenges try to follow the execution of the following
program.

function getFizzBuzz(num::Int)::String
    return (
        rem(num, 15) == 0 ? "Fizz Buzz" :
        rem(num, 3) == 0 ? "Fizz" :
        rem(num, 5) == 0 ? "Buzz" :
        string(num)
    )
end

function printFizzBuzz()
    foreach(x -> println(getFizzBuzz(x)), 1:30)
    return nothing
end

# you can use it like so: printFizzBuzz()
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There are probably other more creative [or more (unnecessarily)
convoluted] ways to solve this task. Personally, I would be satisfied if
you understand the first version.

Solution to Exercise 5
For more information about the legend see this Wikipedia’s article¹¹³ .

¹¹³https://en.wikipedia.org/wiki/Sissa_(mythical_brahmin)

If you want some more detailed mathematical explanation you can
read that Wikipedia’s article¹¹⁴ .

¹¹⁴https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

The Wikipedia’s version of the legend differs slightly from mine, but I
like mine better.

Anyway let’s jump right into some looping.

function getNumOfGrainsOnField64()::Int
    noOfGrains::Int = 1 # no of grains on field 1
    for _ in 2:64
        noOfGrains *= 2 # *= is update operator similar to +=
    end
    return noOfGrains
end

getNumOfGrainsOnField64()

-9223372036854775808

Hmm, that’s odd, a negative number.

Wait a moment. Now I remember, a computer got finite amount of
memory. So in order to work efficiently data is stored in small pre-
allocated pieces of it. If the number you put into that small ‘memory
drawer’ is greater than the amount of space then you get strange
results (imagine that a number sticks out of the drawer but Julia looks
only at the part inside the drawer, hence the strange result).
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If you are interested in technical stuff then you can read more about it
in Julia’s docs (sections Integers¹¹⁵ and Overflow Behavior¹¹⁶ ).

¹¹⁵https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#
Integers

¹¹⁶https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#
Overflow-behavior

You can check the minimum and maximum value for Int by typing
typemin(Int) and typemax(Int) on my laptop those are
-9223372036854775808 and 9223372036854775807, respectively.

The broad range of Int is enough for most calculations, still if you
expect a really big number you should use BigInt¹¹⁷ (BigInt

¹¹⁷https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts

calculations are slower than the ones for Int, but now you should be
only limited by the amount of memory on your computer).

So let me correct the code.

function getNumOfGrainsOnField64()::BigInt
    noOfGrains::BigInt = 1 # no of grains on field 1
    for _ in 2:64
        noOfGrains *= 2
    end
    return noOfGrains
end

getNumOfGrainsOnField64()

9223372036854775808

Whoa, that number got like 19 digits. I don’t even know how to name
it. It cannot be that big, can it?

OK, quick verification with some mathematical calculation (don’t
remember ^? See Section  3.9.1 ).

BigInt(2)^63 # we multiply 2 by 2 by 2, etc. for fields 2:64

9223372036854775808

Yep, the numbers appear to be the same.
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getNumOfGrainsOnField64() == BigInt(2)^63

true

So I guess the aforementioned Wikipedia’s article¹¹⁸ is right, it takes
much more grain than a country (or the world) could produce in a
year.

¹¹⁸https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

Solution to Exercise 6
A possible solution with generics looks something like that

function getInit(vect::Vector{T})::Vector{T} where T
    return vect[1:(end-1)]
end

getInit (generic function with 1 method)

The parenthesis around end-1 are not necessary. I added them for
better clarity of how the last by one index is calculated.

Tests:

getInit([1, 2, 3, 4])

[1, 2, 3]

getInit(["ab", "cd", "ef", "gh"])

["ab", "cd", "ef"]

getInit([3.3])

Float64[]
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getInit([])

BTW. Try to remove type declarations and see if the function still
works (if you do this right then it should).

OK, that’s it for now. Let’s move to another chapter.
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Statistics - introduction

OK, once we got some Julia basics under our belts, it is time to get
familiar with statistics.

First of all, what is statistics anyway?

Hmm, actually I have never tried to learn the definition by heart (after
all getting such a question during an exam is slim to none). Still, if I
were to give a short (2-3 sentences) definition without looking it up I
would say something like that.

Statistics is a set of methods for drawing conclusions about big things
(populations) based on small things (samples). A statistician observes
only a small part of a bigger picture and makes generalization about
what he does not see based on what he saw. Given that he saw only a
part of the picture he can never be entirely sure of his conclusions.

OK, feel free to visit Wikipedia ( see statistics¹¹⁹ ) and see how I did
with my definition. The definition given there is probably more

¹¹⁹https://en.wikipedia.org/wiki/Statistics

accurate and comprehensive than the one given above, but maybe
mine will be easier to grasp for a beginner.

Anyway, my definition says “can never be entirely sure” so there needs
to be some way to measure the (un)certainty. This is where probability
comes into the picture. We will explore this concept in more than a
few next pages.

Chapter imports
Later in this chapter we are going to use the following libraries

import CairoMakie as Cmk
import Distributions as Dsts
import Random as Rand

If you want to follow along you should have them installed on your
system. A reminder of how to deal (install and such) with packages
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can be found here¹²⁰ . But wait, you may prefer to use Project.toml

¹²⁰https://docs.julialang.org/en/v1/stdlib/Pkg/

and Manifest.toml files from the code snippets for this chapter¹²¹ to
install the required packages. The instructions you will find here¹²² .

¹²¹https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04
¹²²https://pkgdocs.julialang.org/v1/environments/

The imports will be placed in the code snippet when first used, but I
thought it is a good idea to put them here, after all imports should be
at the top of your file (so here they are at the top of the chapter).
Moreover, that way they will be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of
unknown functionality, just go to the code snippets mentioned above
and run the code from the *.jl file. Once you have done that you can
always extract a small piece of it and test it separately (modify and
experiment with it if you wish).

Probability - definition
To me probability is one of the key concepts in statistics, after all any
statistical software will gladly calculate the famous p-value (a form of
probability) for you. Still, let’s get back to our probability definition
(see the sub-chapter name).

As said, at the conclusion of the previous section (Section  4 ),
probability is a way to measure certainty. It’s like with the grades in
school. In Poland a pupil can score 1 to 6 (lowest to highest grade) and
this tells us how well he mastered the subject. If I score 1 then I didn’t
master it at all, but when I get 6 this means that I got it all. We know
from everyday life that probability takes values from 0 to 100%, e.g.

• Are you sure of it?
• Absolutely, one hundred percent.

or

• Do you think he can make it?
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• I would say it’s fifty-fifty.

or even

• What are the chances?
• Pretty much, zero.

When something is bound to happen we assign it the probability of
100%.

When it can go either way we say fifty-fifty (50% it will happen, 50% it
will not happen).

When an event is impossible we say zero (probability of it happening
is 0%).

And this is the way statisticians use it. OK, maybe not quite. A typical
statistics textbook will say that the probability takes values from 0 to
1. It is expressed this way for a few particular reasons (some of the

reasons may be given later). Moreover, believe it or not, but it is
actually compatible with our understanding that is based on everyday
life.

From primary school (see also Wikipedia’s definition of percentage¹²³ )
I remember that 1% is actually 1/100th of something which I can write
down using proper fraction as 1100  or a decimal as 0.01.

¹²³https://en.wikipedia.org/wiki/Percentage

Therefore any probability value from 0% to 100% can be written in
these few forms. For instance:

• 0% = 0100  = 0.00 = 0
• 1% = 1100  = 0.01
• 5% = 5100  = 0.05
• 10% = 10100  = 0.10 = 0.1
• 20% = 20100  = 0.20 = 0.2
• 50% = 50100  = 0.50 = 0.5
• 100% = 100100  = 1.00 = 1
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To give you a better intuitive grasp of probability written as a decimal
take a look at this simplistic graphical depiction of it

# prob = 0.0
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
           ∆
# prob = 0.2
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
                     ∆
# prob = 0.5
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
                                    ∆
# prob = 0.8
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
                                                   ∆
# prob = 1.0
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
                                                             ∆

Anyway, when written down as a decimal (like a statistician would do
it) the probability is easier to type with a keyboard and a software
calculator¹²⁴ . Additionally, now we will be able to perform some simple

¹²⁴https://en.wikipedia.org/wiki/Software_calculator

but useful calculations with those numbers (see the upcoming
sections).

Probability - properties
One of the cool and practical stuff that I learned about probability is
that it can be:

• added
• subtracted
• multiplied
• divided (not discussed in this section)

How about I illustrate that with a simple example.

From biology classes I remember that the genetic material ( DNA¹²⁵ ) of
a cell is in its nucleus. It is organized in a set of chromosomes.

¹²⁵https://en.wikipedia.org/wiki/DNA

Chromosomes come in pairs (twin or homologous chromosomes¹²⁶ , we

¹²⁶https://en.wikipedia.org/wiki/Homologous_chromosome
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get one from each of our parents). Each chromosome contains genes
(like beads on a thread). Since we got a pair of chromosomes, then
each chromosome from a pair contains a copy of the same gene(s). The
copies are exactly the same or are different versions of a gene (we call
them alleles¹²⁷ ). In order to create gametes (like the egg cell and sperm

¹²⁷https://en.wikipedia.org/wiki/Allele

cells) the parents’ cells undergo division ( meiosis¹²⁸ ). During this

¹²⁸https://en.wikipedia.org/wiki/Meiosis

process a cell splits in two and each of the child cells gets one
chromosome from the pair.

For instance chromosome 9 contains the genes that determine our
ABO blood group system¹²⁹ . A meiosis process for a person with blood

¹²⁹https://en.wikipedia.org/wiki/ABO_blood_group_system#Genetics

group AB would look something like this (for simplicity I drew only
twin chromosomes 9 and only genes for ABO blood group system).
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Figure 1:  Figure 1: Meiosis. Splitting of a cell of a person with blood
group AB.

OK, let’s see how the mathematical properties of probability named at
the beginning of this sub-chapter apply here.

But first, a warm-up (or a reminder if you will). In the previous part
(see Section  4.2 ) we said that probability may be seen as a percentage,
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decimal or fraction. I think that the last one will be particularly useful
to broaden our understanding of the concept. To determine probability
of an event in the numerator (top) we insert the number of times that a
particular event may happen, in the denominator (bottom) we place
the number of all possible events, like so:
𝑛𝑢𝑚 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 𝑚𝑎𝑦 ℎ𝑎𝑝𝑝𝑒𝑛
𝑛𝑢𝑚 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 𝑚𝑎𝑦 ℎ𝑎𝑝𝑝𝑒𝑛

Let’s test this in practice with a few short Q&As (there may be some
repetitions, but they are on purpose).

Q1. In the case illustrated in Figure  1 what is the probability of getting
a gamete with allele C [for short I’ll name it P(C)] from a person with
blood group AB?

A1. Since we can only get allele A or B, but no C then 𝑃(𝐶) = 0
2 = 0 (it

is an impossible event).

Q2. In the case illustrated in Figure  1 what is the probability of getting
a gamete with allele A [for short I’ll name it P(A)] from a person with
blood group AB?

A2. Since we can get only allele A or B then A is 1 of 2 possible events,
so 12 = 0.5.

It seems that to answer this question we just had to divide the counts
of the events satisfying our requirements by the counts of all events.

Note: This is exactly the same probability (since it relies on the
same reasoning) as for getting a gamete with allele B (1 of 2 or 
1
2 = 0.5)

Q3. In the case illustrated in Figure  1 , what is the probability of
getting a gamete with allele A or B [for short I’ll name it P(A or B)] from
a person with blood group AB?
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A3. Since we can only get allele A or B then A or B are 2 events (1 event
when A happens + 1 event when B happens) of 2 possible events, so

𝑃(𝐴 𝑜𝑟 𝐵) = 1+1
2 = 2

2 = 1.

It seems that to answer this question we just had to add the counts of
the both events.

Let’s look at it from a slightly different perspective.

Do you remember that in A2 we stated that the probability of getting
gamete A is 12  and the probability of getting gamete B is 12? And do you
remember that in primary school we learned that fractions can be
added one to another? Let’s see will that do us any good here.

𝑃(𝐴 𝑜𝑟 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) = 1
2 +

1
2 =

2
2 = 1

Interesting, the answer (and calculations) are (virtually) the same
despite a slightly different reasoning. So it seems that in this case the
probabilities can be added.

Q4. In the case illustrated in Figure  1 , what is the probability of
getting a gamete with allele B (for short I’ll name it P(B)) from a person
with blood group AB?

A4. I know, we already answered it in A2. But let’s do something wild
and use a slightly different reasoning.

Getting gamete A or B are two incidents of two possible events (2 of 2).
If we subtract event A (that we are not interested in) from both the
events we get:

𝑃(𝐵) = 2−1
2 = 1

2

It seems that to answer this question we just had to subtract the count
of the events we are not interested in from the counts of the both
events.

Let’s see if this works with fractions (aka probabilities).

𝑃(𝐵) = 𝑃(𝐴 𝑜𝑟 𝐵) − 𝑃(𝐴) = 2
2 −

1
2 =

1
2
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Yep, a success indeed.

Q5. Look at Figure  2 .

Figure 2:  Figure 2: Blood groups, gametes. P - parents, PG - parents’
gametes, C - children, CG - children’s’ gametes.

Here we see that a person with blood group AB got children with a
person with blood group O (ii - recessive homo-zygote). The two
possible blood groups in children are A (Ai - hetero-zygote) and B (Bi -
hetero-zygote).

And now, the question. In the case illustrated in Figure  2 , what is the
probability that a child (row C) of those parents (row P) will produce a
gamete with allele A (row CG)?
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A5. One way to answer this question would be to calculate the
gametes in the last row (CG). We got 4 gametes in total (A, i, B, i) only
one of which fulfills the criteria (gamete with allele A). Therefore, the
probability is

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 1
4 = 0.25 and that’s it.

Another way to think about this problem is the following. In order for
a child to produce a gamete with allele A it had to get it first from the
parent. So what we are looking for is:

1. what proportion of children got allele A from their parents (here,
half of them)

2. in the children with allele A in their genotype, what proportion of
gametes contains allele A (here, half of the gametes)

So, in order to get the half of the half we have to multiply two
proportions (aka fractions):

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 𝑃(𝐴 𝑖𝑛 𝐶)*𝑃(𝐴 𝑖𝑛 𝑔𝑎𝑚𝑒𝑡𝑒𝑠 𝑜𝑓 𝐶 𝑤𝑖𝑡ℎ 𝐴)

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 1
2*

1
2 =

1
4 = 0.25

So it turns out that probabilities can be multiplied (at least sometimes).

Probability properties - summary
The above was my interpretation of the probability properties
explained with biological examples instead of the standard fair coins
tosses (not the perfect analogy though, since the events are not quite
independent). Let’s sum up of what we learned. I’ll do this on a coin
toss examples (outcome: heads or tails), you compare it with the
examples from Q&As above.

1. Probability of an event is a proportion (or fraction) of times this
event happens to the total amount of possible distinctive events.
Example: 𝑃(ℎ𝑒𝑎𝑑𝑠) = ℎ𝑒𝑎𝑑𝑠

ℎ𝑒𝑎𝑑𝑠+𝑡𝑎𝑖𝑙𝑠 =
1
2 = 0.5

2. Probability of an impossible event is equal to 0. Probability of a
certain event is equal to 1. So, the probability takes values between
0 (inclusive) and 1 (inclusive).

73



3. Probabilities of the mutually exclusive complementary events add
up to
1. Example:

𝑃(ℎ𝑒𝑎𝑑𝑠 𝑜𝑟 𝑡𝑎𝑖𝑙𝑠) = 𝑃(ℎ𝑒𝑎𝑑𝑠) + 𝑃(𝑡𝑎𝑖𝑙𝑠) = 1
2 +

1
2 = 1

4. Probability of two mutually exclusive complementary events
occurring at the same time is 0 (cannot get both heads and tails in a
single coin toss).

5. Probability of two mutually exclusive complementary events
occurring one after another is a product of two probabilities.

Example: probability of getting two tails in two consecutive coin
tosses 𝑃(𝑡𝑎𝑖𝑙𝑠 𝑎𝑛𝑑 𝑡𝑎𝑖𝑙𝑠) =
𝑃(𝑡𝑎𝑖𝑙𝑠 𝑖𝑛 1𝑠𝑡 𝑡𝑜𝑠𝑠)*𝑃(𝑡𝑎𝑖𝑙𝑠 𝑖𝑛 2𝑛𝑑 𝑡𝑜𝑠𝑠)

𝑃 (𝑡𝑎𝑖𝑙𝑠 𝑎𝑛𝑑 𝑡𝑎𝑖𝑙𝑠) = 1
2*

1
2 =

1
4 = 0.25

Actually, the last is also true for two simultaneous coin tosses
(imagine that one coin lands on a floor a few milliseconds before
the other). Moreover, notice that here, the result of the first coin
toss does not influence the result of the second coin toss (they are
independent).

Anyway, the chances are that whenever you say P(this) AND
P(that) you should use multiplication. Whereas whenever you
say P(this) OR P(that) you ought to use addition. Of course you
should always think does it make sense before you do it (if the events
are not mutually exclusive and independent then it may not). To check
your reasoning it may be easier to think about counts and their
proportions. The latter can be translated to probabilities.

Probability - theory and practice
OK, in the previous chapter (see Section  4.3 ) we said that a person
with blood group AB would produce gametes A and B with probability
50% (p = 12  = 0.5) each. A reference value for sperm count¹³⁰ is

¹³⁰https://en.wikipedia.org/wiki/Semen_analysis#Sperm_count

16’000’000 per mL or 16’000 per 𝜇𝐿. Given that last value, we would
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expect 8’000 cells (16’000 * 0.5) to contain allele A and 8’000 (16’000 *
0.5) cells to contain allele B.

Let’s put that to the test.

Wait! Hold your horses! We’re not going to take biological samples.
Instead we will do a computer simulation.

import Random as Rand
Rand.seed!(321) # optional, needed for reproducibility
gametes = Rand.rand(["A", "B"], 16_000)
first(gametes, 7)

["B", "A", "B", "A", "B", "A", "A"]

First, we import a package to generate random numbers (import
Random as Rand). Then we set seed to some arbitrary number
(Rand.seed!(321)) in order to reproduce the results see the docs¹³¹ .

¹³¹https://docs.julialang.org/en/v1/stdlib/Random/#Random.seed!

Thanks to the above you should get the exact same result as I did
(assuming you’re using the same version of Julia). Then we draw
16’000 gametes out of two available (gametes = Rand.rand(["A",
"B"], 16_000)) with function rand (drawing with replacement) from
Random library (imported as Rand). Finally, since looking through all
16’000 gametes is tedious we display only first 7 (first(gametes, 7))
to have a sneak peak at the result.

Let’s write a function that will calculate the number of gametes for us.

function getCounts(v::Vector{T})::Dict{T,Int} where T
    counts::Dict{T,Int} = Dict()
    for elt in v
        if haskey(counts, elt) #1
            counts[elt] = counts[elt] + 1 #2
        else #3
            counts[elt] = 1 #4
        end #5
    end
    return counts
end
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Try to figure out what happened here on your own. If you need a
refresher on dictionaries in Julia see Section  3.5.3 or the docs¹³² .

¹³²https://docs.julialang.org/en/v1/base/collections/#Base.Dict

Briefly, first we initialize an empty dictionary (counts::Dict{T,Int}
= Dict()) with keys of some type T (elements of that type compose
the vector v). Next, for every element (elt) in the vector v we check if
it is present in the counts (if haskey(counts, elt)). If it is we add 1
to the previous count (counts[elt] = counts[elt] + 1). If not (else)
we put the key (elt) into the dictionary with count 1. In the end we
return the result (return counts). The if ... else block (lines with
comments #1-#5) could be replaced with one line (counts[elt] =
get(counts, elt, 0) + 1), but I thought the more verbose version
would be easier to understand.

Let’s test it out.

gametesCounts = getCounts(gametes)
gametesCounts

Dict{String, Int64} with 2 entries:
  "B" => 8082
  "A" => 7918

Hmm, that’s odd. We were suppose to get 8’000 gametes with allele A
and 8’000 with allele B. What happened? Well, reality. After all “All
models are wrong, but some are useful”¹³³ . Our theoretical reasoning

¹³³https://en.wikipedia.org/wiki/All_models_are_wrong

was only approximation of the real world and as such cannot be
precise (although with greater sample sizes comes greater precision).
For instance, you can imagine that a fraction of the gametes were
damaged (e.g. due to some unspecified environmental factors) and
underwent apoptosis (aka programmed cell death). So that’s how it is,
deal with it.

OK, let’s see what are the experimental probabilities we got from our
hmm… experiment.
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function getProbs(counts::Dict{T, Int})::Dict{T,Float64} where T
    total::Int = sum(values(counts))
    return Dict(k => v/total for (k, v) in counts)
end

First we calculate total counts no matter the gamete category
(sum(values(counts))). Then we use a dictionary comprehension,
similar to the comprehension we met before (see Section  3.6.3 ).
Briefly, for each key and value in counts (for (k,v) in counts) we
create the same key in a new dictionary with a new value being the
proportion of v in total (k => v/total).

And now the experimental probabilities.

gametesProbs = getProbs(gametesCounts)
gametesProbs

Dict{String, Float64} with 2 entries:
  "B" => 0.505125
  "A" => 0.494875

One last point. While writing numerous programs I figured out it is
sometimes better to represent things (internally) as numbers and only
in the last step present them in a more pleasant visual form to the
viewer (this way may be faster computationally). In our case we could
have used 0 as allele A and 1 as allele B like so.

Rand.seed!(321)
gametes = Rand.rand([0, 1], 16_000)
first(gametes, 7)

[1, 0, 1, 0, 1, 0, 0]

Then to get the counts of the alleles I could type:

alleleBCount = sum(gametes)
alleleACount = length(gametes) - alleleBCount
(alleleACount, alleleBCount)
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(7918, 8082)

And to get the probabilities for the alleles I could simply type:

alleleBProb = sum(gametes) / length(gametes)
alleleAProb = 1 - alleleBProb
(round(alleleAProb, digits=6), round(alleleBProb, digits=6))

(0.494875, 0.505125)

Go ahead. Compare the numbers with those that you got previously
and explain it to yourself why this second approach works. Once
you’re done click the right arrow to explore probability distributions in
the next section.

Note: Similar functionality to getCounts and getProbs can be
found in StatsBase.jl, see: countmap¹³⁴ and proportionmap¹³⁵ .

¹³⁴https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.countmap
¹³⁵https://juliastats.org/StatsBase.jl/stable/counts/#StatsBase.proportionmap

Probability distribution
Another important concept worth knowing is that of probability
distribution¹³⁶ . Let’s explore it with some, hopefully interesting,
examples.

¹³⁶https://en.wikipedia.org/wiki/Probability_distribution

First, imagine I offer Your a bet. You roll two six-sided dice. If the sum
of the dots is 12 then I give you $125, otherwise you give me $5. Hmm,
sounds like a good bet, doesn’t it? Well, let’s find out. By flexing our
probabilistic muscles and using a computer simulation this should not
be too hard to answer.

function getSumOf2DiceRoll()::Int
    return sum(Rand.rand(1:6, 2))
end

Rand.seed!(321)
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numOfRolls = 100_000
diceRolls = [getSumOf2DiceRoll() for _ in 1:numOfRolls]
diceCounts = getCounts(diceRolls)
diceProbs = getProbs(diceCounts)

Here, we rolled two 6-sided dice 100 thousand (105) times. The code
introduces no new elements. The functions: getCounts, getProbs,
Rand.seed! were already introduced in the previous chapter (see
Section  4.4 ). And the for _ in construct we met while talking about
for loops (see Section  3.6.1 ).

So, let’s take a closer look at the result.

(diceCounts[12], diceProbs[12])

(2780, 0.0278)

It seems that out of 100’000 rolls with two six-sided dice only 2780
gave us two sixes (6 + 6 = 12), so the experimental probability is equal
to 0.0278. But is it worth it? From a point of view of a single person
(remember the bet is you vs. me) a person got probability of
diceProbs[12] = 0.0278 to win $125 and a probability of
sum([get(diceProbs, i, 0) for i in 2:11]) = 0.9722 to lose $5.
Since all the probabilities (for 2:12) add up to 1, the last part could be
rewritten as 1 - diceProbs[12] = 0.9722. Using Julia I can write this
in the form of an equation like so:

function getOutcomeOfBet(probWin::Float64, moneyWin::Real,
                         probLose::Float64, moneyLose::Real)::Float64
    # in mathematics first we do multiplication (*), then subtraction
(-)
    return probWin * moneyWin - probLose * moneyLose
end

outcomeOf1bet = getOutcomeOfBet(diceProbs[12], 125, 1 - diceProbs[12],
5)

round(outcomeOf1bet, digits=2) # round to cents (1/100th of a dollar)

-1.39
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In total you are expected to lose $ 1.39.

Now some people may say “Phi! What is $1.39 if I can potentially win
$125 in a few tries”. It seems to me those are emotions (and perhaps
greed) talking, but let’s test that too.

If 200 people make that bet (100 bet $5 on 12 and 100 bet $125 on the
other result) we would expect the following outcome:

numOfBets = 100

outcomeOf100bets = (diceProbs[12] * numOfBets * 125) -
    ((1 - diceProbs[12]) * numOfBets * 5)
# or
outcomeOf100bets = ((diceProbs[12] * 125) - ((1 - diceProbs[12]) * 5)) *
100
# or simply
outcomeOf100bets = outcomeOf1bet * numOfBets

round(outcomeOf100bets, digits=2)

-138.6

OK. So, above we introduced a few similar ways to calculate that. The
result of the bets is −138.6. In reality roughly 97 people that bet $5 on
two sixes (6 + 6 = 12) lost their money and only 3 of them won $125
dollars which gives us 3*$125 − 97*$5 = −$110 (the numbers are not
exact because based on the probabilities we got, e.g. 2.78 people and
not 3).

Interestingly, this is the same as if you placed that same bet with me
100 times. Ninety-seven times you would have lost $5 and only 3 times
you would have won $125 dollars. This would leave you over $110
poorer and me over $110 richer ($110 transfer from you to me where
the money should be).

It seems that instead of betting on 12 (two sixes) many times you
would be better off had you started a casino or a lottery. Then you
should find let’s say 1’000 people daily that will take that bet (or buy
$5 ticket) and get you $ 1386.0 (outcomeOf1bet * 1000) richer every
day (well, probably less, because you would have to pay some taxes,
still this makes a pretty penny).
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OK, you saw right through me and you don’t want to take that bet.
Hmm, but what if I say a nice, big “I’m sorry” and offer you another
bet. Again, you roll two six-sided dice. If you get 11 or 12 I give you
$90 otherwise you give me $10. This time you know right away what
to do:

pWin = sum([diceCounts[i] for i in 11:12]) / numOfRolls
# or
pWin = sum([diceProbs[i] for i in 11:12])

pLose = 1 - pWin

round(pWin * 90 - pLose * 10, digits=2)
# or
round(getOutcomeOfBet(pWin, 90, pLose, 10), digits=2)

-1.54

So, to estimate the probability we can either add number of
occurrences of 11 and 12 and divide it by the total occurrences of all
events OR, as we learned in the previous chapter (see Section  4.3 ), we
can just add the probabilities of 11 and 12 to happen. Then we proceed
with calculating the expected outcome of the bet and find out that I
wanted to trick you again (“I’m sorry. Sorry.”).

Now, using this method (that relies on probability distribution) you
will be able to look through any bet that I will offer you and choose
only those that serve you well. OK, so what is a probability
distribution anyway? Well, it is just the value that probability takes for
any possible outcome. We can represent it graphically by using any of
Julia’s plotting libraries¹³⁷ .

¹³⁷https://juliapackages.com/c/graphical-plotting

Here, I’m going to use CairoMakie.jl¹³⁸ which seems to produce
pleasing to the eye plots and is simple enough (that’s what I think after

¹³⁸https://docs.makie.org/stable/

I read its Basic Tutorial¹³⁹ ). Nota bene also its error messages are quite
informative (once you learn to read them).

¹³⁹https://docs.makie.org/v0.21/tutorials/getting-started
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import CairoMakie as Cmk

function getSortedKeysVals(d::Dict{A,B})::Tuple{
    Vector{A},Vector{B}} where {A,B}
    sortedKeys::Vector{A} = keys(d) |> collect |> sort
    sortedVals::Vector{B} = [d[k] for k in sortedKeys]
    return (sortedKeys, sortedVals)
end

xs1, ys1 = getSortedKeysVals(diceCounts)
xs2, ys2 = getSortedKeysVals(diceProbs)

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1:2],
        title="Rolling 2 dice 100'000 times",
        xlabel="Sum of dots",
        ylabel="Number of occurrences",
        xticks=2:12
)
Cmk.barplot!(ax1, xs1, ys1, color="red")
ax2 = Cmk.Axis(fig[2, 1:2],
        title="Rolling 2 dice 100'000 times",
        xlabel="Sum of dots",
        ylabel="Probability of occurrence",
        xticks=2:12
)
Cmk.barplot!(ax2, xs2, ys2, color="blue")
fig

Note: Because of the compilation process running Julia’s plots for
the first time may be slow. If that is the case you may try some
tricks recommended by package designers, e.g.  this one from the
creators of Gadfly.jl¹⁴⁰ .

¹⁴⁰http://gadflyjl.org/stable/#Compilation

First, we extracted the sorted keys and values from our dictionaries
(diceCounts and diceProbs) using getSortedKeysVals. The only new
element here is |> operator. It’s role is piping¹⁴¹ the output of one

¹⁴¹https://docs.julialang.org/en/v1/manual/functions/#Function-composition-
and-piping

function as input to another function. So keys(d) |> collect |>
sort is just another way of writing sort(collect(keys(d))). In both
cases first we run keys(d), then we use the result of this function as
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an input to collect function, and finally pass its result to sort
function. Out of the two options, the one with |> seems to be clearer
to me.

Regarding the getSortedKeysVals it returns a tuple of sorted keys and
values (that correspond with the sorted keys). In line xs1, ys1 =
getSortedKeysVals(diceCounts) we unpack and assign them to xs1
(it gets the sorted keys) and ys1 (it gets values that correspond with
the sorted keys). We do likewise for diceProbs in the line below.

In the next step we draw the distributions as bar plots (Cmk.barplot!).
The code seems to be pretty self explanatory after you read the
tutorial¹⁴² that I just mentioned. A point of notice here (in case you

¹⁴²https://docs.makie.org/v0.21/tutorials/getting-started

wanted to know more): the axis=, color=, xlabel=, etc. are so called
keyword arguments¹⁴³ . OK, let’s get back to the graph. The number of

¹⁴³https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments

counts (number of occurrences) on Y-axis is displayed using scientific
notation, i.e. 1.0𝑥104 is 10’000 (one with 4 zeros) and 1.5𝑥104 is
15’000.
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Figure 3:  Figure 3: Rolling two 6-sided dice (counts and probabilities).

OK, but why did I even bother to talk about probability distributions
(except for the great enlightenment it might have given to you)? Well,
because it is important. It turns out that in statistics one relies on
many probability distributions. For instance:

• We want to know if people in city A are taller than in city B. We
take at random 10 people from each of the cities, we measure them
and run a famous Student’s T-test¹⁴⁴ to find out. It gives us the
probability that helps us answer our question. It does so based on a
t-distribution¹⁴⁵ (see the upcoming Section  5.3 ).

• We want to know if cigarette smokers are more likely to believe in
ghosts. What we do is we find random groups of smokers and non-
smokers and ask them about it (Do you believe in ghosts?). We
record the results and run a chi squared test¹⁴⁶ that gives us the
probability that helps us answer our question. It does so based on a
chi squared distribution¹⁴⁷ (see the upcoming Section  6.3 ).

¹⁴⁴https://en.wikipedia.org/wiki/Student%27s_t-test
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¹⁴⁵https://en.wikipedia.org/wiki/Student%27s_t-distribution
¹⁴⁶https://en.wikipedia.org/wiki/Chi-squared_test
¹⁴⁷https://en.wikipedia.org/wiki/Chi-squared_distribution

OK, that should be enough for now. Take some rest, and when you’re
ready continue to the next chapter.

Normal distribution
Let’s start where we left. We know that a probability distribution is a
(possibly graphical) depiction of the values that probability takes for
any possible outcome. Probabilities come in different forms and
shapes. Additionally one probability distribution can transform into
another (or at least into a distribution that resembles another
distribution).

Let’s look at a few examples.

Figure 4:  Figure 4: Experimental binomial and multinomial probability
distributions.
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Here we got experimental distributions for tossing a standard fair coin
and rolling a six-sided dice. The code for Figure  4 can be found in the
code snippets for this chapter¹⁴⁸ and it uses the same functions that we
developed previously.

¹⁴⁸https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch04

Those are examples of the binomial (bi - two, nomen - name, those two
names could be: heads/tails, A/B, or most general success/failure) and
multinomial (multi - many, nomen - name, here the names are 1:6)
distributions. Moreover, both of them are examples of discrete
(probability is calculated for a few distinctive values) and uniform
(values are equally likely to be observed) distributions.

Notice that in the Figure  4 (above) rolling one six-sided dice gives us
an uniform distribution (each value is equally likely to be observed).
However in the previous chapter when tossing two six-sided dice we
got the distribution that looks like this.

Figure 5:  Figure 5: Experimental probability distribution for rolling
two 6-sided dice.

What we got here is a bell¹⁴⁹ shaped distribution (c’mon use your
imagination). Here the middle values are the ones most likely to occur.

¹⁴⁹https://en.wikipedia.org/wiki/Bell

It turns out that quite a few distributions may transform into the
distribution that is bell shaped (as an exercise you may want to draw a
distribution for the number of heads when tossing 10 fair coins
simultaneously). Moreover, many biological phenomena got a bell
shaped distribution, e.g. men’s height or the famous intelligence
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quotient¹⁵⁰ (aka IQ). The theoretical name for it is normal
distribution¹⁵¹ . Placed on a graph it looks like this.

¹⁵⁰https://en.wikipedia.org/wiki/Intelligence_quotient
¹⁵¹https://en.wikipedia.org/wiki/Normal_distribution

Figure 6:  Figure 6: Examples of normal distribution.

In Figure  6 the upper panel depicts standard normal distributions
(𝜇 = 0, 𝜎 = 1, explanation in a moment), a theoretical distribution that
all statisticians and probably some mathematicians love. The bottom
panel shows a distribution that is likely closer to the adult males’
height distribution in my country. Long time ago I read that the
average height for an adult man in Poland was 172 [cm] (5.64 [feet])
and the standard deviation was 7 [cm] (2.75 [inch]), hence this plot.

Note: In order to get a real height distribution in a country you
should probably visit a web site of the country’s statistics office
instead relying on information like mine.
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As you can see normal distribution is often depicted as a line plot. That
is because it is a continuous distribution (the values on x axes can take
any number from a given range). Take a look at the height. In my old
identity card¹⁵² next to the field “Height in cm” stands “181”, but is this

¹⁵²https://en.wikipedia.org/wiki/Polish_identity_card

really my precise height? What if during a measurement the height
was 180.7 or 181.3 and in the ID there could be only height in integers.
I would have to round it, right? So based on the identity card
information my real height is probably somewhere between 180.5 and
181.49999… . Moreover, it can be any value in between (like
180.6354551…, although in reality a measuring device does not have
such a precision). So, in the bottom panel of Figure  6 I rounded
theoretical values for height (round(height, digits=0)) obtained
from Rand.rand(Dsts.Normal(172, 7), 10_000_000) (Dsts is
Distributions package that we will discuss soon enough). Next, I
drew bars (using Cmk.barplot that you know), and added a line that
goes through the middle of each bar (to make it resemble the figure in
the top panel).

As you perhaps noticed, the normal distribution is characterized by
two parameters:

• the average (also called the mean) (in a population denoted as: 𝜇, in
a sample as: 𝑥)

• the standard deviation (in a population denoted as: 𝜎, in a sample as:
𝑠, 𝑠𝑑 or 𝑠𝑡𝑑)

We already know the first one (average) from school and previous
chapters (e.g. getAvg from Section  3.6.1 ). However, the last one
(standard deviation) requires some explanation.

Let’s say that there are two students. Here are their grades.

gradesStudA = [3.0, 3.5, 5.0, 4.5, 4.0]
gradesStudB = [6.0, 5.5, 1.5, 1.0, 6.0]
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Imagine that we want to send one student to represent our school in a
national level competition. Therefore, we want to know who is a better
student. So, let’s check their averages.

avgStudA = getAvg(gradesStudA)
avgStudB = getAvg(gradesStudB)
(avgStudA, avgStudB)

(4.0, 4.0)

Hmm, they are identical. OK, in that situation let’s see who is more
consistent with their scores.

To test the spread of the scores around the mean we will subtract
every single score from the mean and take their average (average of
the differences).

diffsStudA = gradesStudA .- avgStudA
diffsStudB = gradesStudB .- avgStudB
(getAvg(diffsStudA), getAvg(diffsStudB))

(0.0, 0.0)

Note: Here we used the dot operators/functions described in
Section  3.6.5

The method is of no use since sum(diffs) is always equal to 0 (and
hence the average is 0). See for yourself

(
    diffsStudA,
    diffsStudB
)

([-1.0, -0.5, 1.0, 0.5, 0.0],
 [2.0, 1.5, -2.5, -3.0, 2.0])

And
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(sum(diffsStudA), sum(diffsStudB))

(0.0, 0.0)

Personally in this situation I would take the average of diffs without
looking at the sign of each difference (abs function does that) like so.

absDiffsStudA = abs.(diffsStudA)
absDiffsStudB = abs.(diffsStudB)
(getAvg(absDiffsStudA), getAvg(absDiffsStudB))

(0.6, 2.2)

Based on this we would say that student A is more consistent with
their grades so he is probably a better student of the two. I would send
student A to represent the school during the national level
competition. Student B is also good, but choosing him is a gamble. He
could shine or embarrass himself (and spot the school’s name) during
the competition.

For any reason statisticians decided to get rid of the sign in a different
way, i.e. by squaring (𝑥2 = 𝑥*𝑥) the diffs. Afterwards they calculated
the average of it. This average is named variance¹⁵³ . Next, they took

¹⁵³https://en.wikipedia.org/wiki/Variance

square root of it (
√
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) to get rid of the squaring (get the spread

of the data in the same scale as the original values, since 
√
𝑥2 = 𝑥). So,

they did more or less this

# variance
function getVar(nums::Vector{<:Real})::Real
    avg::Real = getAvg(nums)
    diffs::Vector{<:Real} = nums .- avg
    squaredDiffs::Vector{<:Real} = diffs .^ 2
    return getAvg(squaredDiffs)
end

# standard deviation
function getSd(nums::Vector{<:Real})::Real
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    return sqrt(getVar(nums))
end

(getSd(gradesStudA), getSd(gradesStudB))

(0.7071067811865476, 2.258317958127243)

Note: In reality the variance and standard deviation for a sample
are calculated with slightly different formulas. This is why the
numbers returned here may be marginally different from the ones
produced by other statistical software. Still, the functions above
are easier to understand and give a better feel of the general ideas.

In the end we got similar numbers, reasoning, and conclusions to the
ones based on abs function. Both the methods rely on a similar
intuition, but we cannot expect to get the same results due to the
slightly different methodology. For instance given the diffs: [-2, 3]
we get:

• for squaring: (−22 + 32)/2 = (4 + 9)/2 = 13/2 = 6.5 and 
√
6.5 =

2.55
• for abs values: (−2 + 3)/2 = (2 + 3)/2 = 5/2 = 2.5

Although I like my method better the sd and squaring/square rooting
is so deeply fixed into statistics that everyone should know it.
Anyway, as you can see the standard deviation is just an average
spread of data around the mean. The bigger value for sd the bigger the
spread. Of course the opposite is also true.

And now a big question.

Why should we care about the mean (𝜇, 𝑥) or sd (𝜎, 𝑠, 𝑠𝑑, 𝑠𝑡𝑑)
anyway?

The answer. For practical reasons that got something to do with the so
called three sigma rule¹⁵⁴ .

¹⁵⁴https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
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The three sigma rule
The rule¹⁵⁵ says that (here a simplified version made by me):

¹⁵⁵https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

• roughly 68% of the results in the population lie within ± 1 sd from
the mean

• roughly 95% of the results in the population lie within ± 2 sd from
the mean

• roughly 99% of the results in the population lie within ± 3 sd from
the mean

Example 1

Have you ever tested your blood¹⁵⁶ and received the lab results that
said something like

¹⁵⁶https://en.wikipedia.org/wiki/Blood

• RBC¹⁵⁷ : 4.45 [106/𝜇𝐿] (4.2 - 6.00)

¹⁵⁷https://en.wikipedia.org/wiki/Complete_blood_count#Reference_ranges

The RBC stands for red blood cell count and the parenthesis contain
the reference values (if you are within this normal range then it is a
good sign). But where did those reference values come from? This
Wikipedia’s page¹⁵⁸ gives us a clue. It reports a value for hematocrit¹⁵⁹ 

¹⁵⁸https://en.wikipedia.org/wiki/Blood
¹⁵⁹https://en.wikipedia.org/wiki/Hematocrit

(a fraction/percentage of whole blood that is occupied by red blood
cells) to be:

• 45 ± 7 (38–52%) for males
• 42 ± 5 (37–47%) for females

Look at this ± symbol. Have you seen it before? No? Then look at the
three sigma rule above.

The reference values were most likely composed in the following way.
A large number (let’s say 10’000-30’000) of healthy females gave their
blood for testing. Hematocrit value was calculated for all of them. The
shape of the distribution was established in a similar way to the one
we did before (e.g. plotting with a Cmk function). The average
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hematocrit was 42 units, the standard deviation was 5 units. The
majority of the results (roughly 68%) lie within ± 1 sd from the mean.
If so, then we got 42 - 5 = 37, and 42 + 5 = 47. And that is how those
two values were considered to be the reference values for the
population. Most likely the same is true for other reference values you
see in your lab results when you test your blood¹⁶⁰ or when you
perform other medical examination.

¹⁶⁰https://en.wikipedia.org/wiki/Complete_blood_count

Example 2

Let’s say a person named Peter lives in Poland. Peter approaches the
famous IQ test conducted at one of our universities. He read on the
internet that there are different intelligence scales¹⁶¹ used throughout
the world. His score is 125. The standard deviation is

¹⁶¹https://en.wikipedia.org/wiki/Intelligence_quotient#Current_tests

24. Is his score high, does it indicate he is gifted (a genius level

intellect)? Well, in order to be a genius one has to be in the top 2% of
the population with respect to their IQ value. What is the location of
Peter’s IQ value in the population.

The score of 125 is just a bit greater than 1 standard deviation above
the mean (which in an IQ test is always 100). From Section  4.5 we
know that when we add the probabilities for all the possible outcomes
we get 1 (so the area under the curve in Figure  6 is equal to 1). Half of
the area lies on the left, half of it on the right (12  = 0.5). So, a person
with IQ = 100 is as intelligent or more intelligent than half the people
(12  = 0.5 = 50%) in the population. Roughly 68% of the results lies
within 1 sd from the mean (half of it below, half of it above). So, from
IQ = 100 to IQ = 124 we got (68% / 2 = 34%). By adding 50% (IQ ≤ 100)
to 34% (100 ≤ IQ ≤ 124) we get 50% + 34% = 84%. Therefore in our case
Peter (with his IQ = 125) is more intelligent than 84% of people in the
population (so top 16% of the population). His intelligence is above the
average, but it is not enough to label him a genius.
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Distributions package
This is all nice and good to know, but in practice it is slow and not
precise enough. What if in the previous example the IQ was let’s say
139. What is the percentage of people more intelligent than Peter. In

the past that kind of questions were to be answered with satisfactory
precision using statistical tables at the end of a textbook. Nowadays it
can be quickly answered with a greater exactitude and speed, e.g. with
the Distributions¹⁶² package. First let’s define a helper function that is

¹⁶²https://juliastats.org/Distributions.jl/stable/

going to tell us how many standard deviations above or below the
mean a given value is (it is called z-score¹⁶³ )

¹⁶³https://en.wikipedia.org/wiki/Standard_score

# how many std. devs is value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64
    return (value - mean)/sd
end

OK, now let’s give it a swing. First, something simple IQ = 76, and IQ =
124 (should equal to −1 sd, +1 sd). Alternatively, look at the value
returned by getZScore as a value on the x-axis in Figure  6 (top panel).

(getZScore(76, 100, 24), getZScore(124, 100, 24))

(-1.0, 1.0)

Indeed, it seems to be working as expected, and now the value from
this task

zScorePeterIQ139 = getZScore(139, 100, 24)
zScorePeterIQ139

1.625

It is 1.625 sd above the mean. However, we cannot use it directly to
estimate the percentage of people above that score because due to the
shape of the distribution in Figure  6 the change is not linear: 1 sd ≈
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68%, 2 sd ≈ 95%, 3 sd ≈ 99% (first it changes quickly then it slows
down). This is where the Distributions package comes into the
picture. Under the hood it uses ‘scary’ mathematical formulas for
normal distribution¹⁶⁴ to get us what we want. In our case we use it like
this

¹⁶⁴https://en.wikipedia.org/wiki/Normal_distribution

import Distributions as Dsts

Dsts.cdf(Dsts.Normal(), zScorePeterIQ139)

0.9479187205847805

Here we first create a standard normal distribution with 𝜇 = 0 and 𝜎 =
1 (Dsts.Normal()). Then we sum all the probabilities that are lower
than or equal to zScorePeterIQ139 = getZScore(139, 100, 24) =
1.625 standard deviation above the mean with Dsts.cdf. We see that
roughly 0.9479 ≈ 95% of people is as intelligent or less intelligent than
Peter. Therefore in this case only ≈0.05 or ≈5% of people are more
intelligent than him. Alternatively you may say that the probability
that a randomly chosen person from that population is more
intelligent than Peter is ≈0.05 or ≈5%.

Note: cdf in Dsts.cdf stands for cumulative distribution
function¹⁶⁵ . For more information on Dsts.cdf see these docs¹⁶⁶ or
for Dsts.Normal those docs¹⁶⁷ .

¹⁶⁵https://en.wikipedia.org/wiki/Cumulative_distribution_function
¹⁶⁶https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.cdf-

Tuple%7BUnivariateDistribution,%20Real%7D
¹⁶⁷https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Normal

The above is a classical method and it is useful to know it. Based on
the z-score you can check the appropriate percentage/probability for a
given value in a table that is usually placed at the end of a statistics
textbook. Make sure you understand it since, we are going to use this
method, e.g. in the upcoming chapter on a Student’s t-test (see Section
5.2 ).
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Luckily, in the case of the normal distribution we don’t have to
calculate the z-score. The package can do that for us, compare

# for better clarity each method is in a separate line
(
    Dsts.cdf(Dsts.Normal(), getZScore(139, 100, 24)),
    Dsts.cdf(Dsts.Normal(100, 24), 139)
)

(0.9479187205847805, 0.9479187205847805)

So, in this case you can either calculate the z-score for standard normal
distribution with 𝜇 = 0 and 𝜎 = 1 or define a normal distribution with
a given mean and sd (here Dsts.Normal(100, 24)) and let the
Dsts.cdf calculate the z-score (under the hood) and probability (it
returns it) for you.

To further consolidate our knowledge. Let’s go with another example.
Remember that I’m 181 cm tall. Hmm, I wonder what percentage of
men in Poland is taller than me if 𝜇 = 172 [cm] and 𝜎 = 7 [cm].

1 - Dsts.cdf(Dsts.Normal(172, 7), 181)

0.09927139684333097

The Dsts.cdf gives me left side of the curve (the area under the curve
for height ≤ 181). So in order to get those that are higher than me I
subtracted it from 1. It seems that under those assumptions roughly
10% of men in Poland are taller than me (approx. 1 out of 10 men that I
encounter is taller than me). I could also say: “the probability that a
randomly chosen man from that population is higher than me is ≈0.1
or ≈10%. Alternatively I could have used Dsts.ccdf¹⁶⁸ function which
under the hood does 1 - Dsts.cdf(distribution, xCutoffPoint).

¹⁶⁸https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.ccdf-
Tuple%7BUnivariateDistribution,%20Real%7D

OK, and how many men in Poland are exactly as tall as I am? In
general that is the job for Dsts.pdf (pdf stands for probability density
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function¹⁶⁹ , see the docs for Dsts.pdf¹⁷⁰ ). It works pretty well for

¹⁶⁹https://en.wikipedia.org/wiki/Probability_density_function
¹⁷⁰https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-

Tuple%7BUnivariateDistribution,%20Real%7D

discrete distributions (we talked about them at the beginning of this
sub-chapter). For instance theoretical probability of getting 12 while
rolling two six-sided dice is

Dsts.pdf(Dsts.Binomial(2, 1/6), 2)

0.02777777777777778

Compare it with the empirical probability from Section  4.5 which was
equal to 0.0278. Here we treated it as a binomial distribution (success:
two sixes (6 + 6 = 12), failure: other result) hence Dsts.Binomial with
2 (number of dice to roll) and 1/6 (probability of getting 6 in a single
roll). Then we used Dsts.pdf to get the probability of getting exactly
two sixes. More info on Dsts.Binomial can be found here¹⁷¹ and on
Dsts.pdf can be found there¹⁷² .

¹⁷¹https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Binomial
¹⁷²https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.pdf-

Tuple%7BUnivariateDistribution,%20Real%7D

However there is a problem with using Dsts.pdf for continuous
distributions because it can take any of the infinite values within the
range. Remember, in theory there is an infinite number of values
between 180 and 181 (like 180.1111, 180.12222, etc.). So usually for
practical reasons it is recommended not to calculate a probability
density function (hence pdf) for a continuous distribution (1 / infinity 
≈ 0). Still, remember that the height of 181 [cm] means that the value
lies somewhere between 180.5 and 181.49999… . Moreover, we can
reliably calculate the probabilities (with Dsts.cdf) for ≤ 180.5 and ≤
181.49999… so a good approximation would be

heightDist = Dsts.Normal(172, 7)
# 2 digits after dot because of the assumed precision of a measuring
device
Dsts.cdf(heightDist, 181.49) - Dsts.cdf(heightDist, 180.50)
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0.024724273314878698

OK. So it seems that roughly 2.5% of adult men in Poland got 181 [cm]
in the field “Height” in their identity cards. If there are let’s say 10
million adult men in Poland then roughly 250000.0 (so 250 k) people
are approximately my height. Alternatively under those assumptions
the probability that a random man from the population is as tall as I
am (181 cm in the height field of his identity card) is ≈0.025 or ≈2.5%.

If you are still confused about this method take a look at the figure
below.

Figure 7:  Figure 7: Using cdf to calculate proportion of men that are
between 170 and 180 [cm] tall.

Here for better separation I placed the height of men between 170 and
180 [cm]. The method that I used subtracts the area in blue from the
area in red (red - blue). That is exactly what I did (but for 181.49 and
180.50 [cm]) when I typed Dsts.cdf(heightDist, 181.49) -
Dsts.cdf(heightDist, 180.50) above.
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OK, time for the last theoretical sub-chapter in this section. Whenever
you’re ready click on the right arrow.

Hypothesis testing
OK, now we are going to discuss a concept of hypothesis testing. But
first let’s go through an example from everyday life that we know or at
least can imagine. Ready?

A game of tennis
So imagine there is a group of people and among them two amateur
tennis players: John and Peter. Everyone wants to know which one of
them is a better tennis player. Well, there is only one way to find out.
Let’s play some games!

As far as I’m aware a tennis match can end with a win of one player,
the other loses (there are no draws). Before the games the people set
the rules. Everyone agrees that the players will play six games. To
prove their supremacy a player must win all six games (six wins in a
row are unlikely to happen by accident, I hope we can all agree on
that). The series of games ends with the result 0-6 for Peter. According
to the previously set rules he is declared the local champion.

Believe it or not but this is what statisticians do. Of course they use
more formal methodology and some mathematics, but still, this is what
they do:

• before the experiment they start with two assumptions

‣ initial assumption: be fair and assume that both players play
equally well (this is called the null hypothesis¹⁷³ , 𝐻0)

‣ alternative assumption: one player is better than the other (this is
called the alternative hypothesis¹⁷⁴ , 𝐻𝐴)

• before the experiment they decide on how big a sample should be (in
our case six games).

• before the experiment they decide on the cutoff level, once it is
reached they will abandon the initial assumption (𝐻0) and chose the
alternative (𝐻𝐴). In our case the cutoff is: six games in a row won by
a player
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• they conduct the experiment (players play six games) and record the
results

• after the experiment when the result provides enough evidence (in
our case six games won by the same player) they decide to reject 𝐻0,
and choose 𝐻𝐴. Otherwise they stick to their initial assumption
(they do not reject 𝐻0)

¹⁷³https://en.wikipedia.org/wiki/Null_hypothesis
¹⁷⁴https://en.wikipedia.org/wiki/Alternative_hypothesis

And that’s how it is, only that statisticians prefer to rely on
probabilities instead of absolute numbers. So in our case a statistician
says:

“I assume that 𝐻0 is true. Then I will conduct the experiment and
record the result. I will calculate the probability of such a result (or a
more extreme result) happening by chance. If it is small enough, let’s
say 5% or less (𝑝𝑟𝑜𝑏 ≤ 0.05), then the result is unlikely to have
occurred by accident. Therefore I will reject my initial assumption (𝐻0)
and choose the alternative (𝐻𝐴). Otherwise I will stay with my initial
assumption.”

Let’s see such a process in practice and connect it with what we
already know.

Tennis - computer simulation
First a computer simulation.

# result of 6 tennis games under H0 (equally strong tennis players)
function getResultOf6TennisGames()
    return sum(Rand.rand(0:1, 6)) # 0 means John won, 1 means Peter won
end

Rand.seed!(321)
tennisGames = [getResultOf6TennisGames() for _ in 1:100_000]
tennisCounts = getCounts(tennisGames)
tennisProbs = getProbs(tennisCounts)

Here getResultOf6TennisGames returns a result of 6 games under 𝐻0
(both players got equal probability to win a game). When John wins a
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game then we get 0, when Peter we get 1. So if after running
getResultOf6TennisGames we get, e.g. 4 we know that Peter won 4
games and John won 2 games. We repeat the experiment 100’000 times
to get a reliable estimate of the results distribution.

OK, at the beginning of this chapter we intuitively said that a player
needs to win 6 games to become the local champion. We know that the
result was 0-6 for Peter. Let’s see what is the probability that Peter
won by chance six games in a row (assuming 𝐻0 is true).

tennisProbs[6]

0.01538

In this case the probability of Peter winning by chance six games in a
row is very small. If we express it graphically it roughly looks like this:

# prob = 0.015
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
            ∆

So, it seems that intuitively we set the cutoff level well. Let’s see if the
statistician from the quotation above would be satisfied (“If it is small
enough, let’s say 5% or less (𝑝𝑟𝑜𝑏 ≤ 0.05), then the result is unlikely to
have occurred by accident. Therefore I will reject my initial
assumption (𝐻0) and choose the alternative (𝐻𝐴). Otherwise I will
stay with my initial assumption.”)

First, let’s compare them graphically.

# prob = 0.05
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
             ∆

# prob = 0.0153
impossible ||||||||||||||||||||||||||||||||||||||||||||||||||| certain
            ∆
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Although our text based graphics is slightly imprecise, we can see that
the obtained probability lies below (to the left of) our cutoff level. And
now more precise mathematical comparison.

# sigLevel - significance level for probability
# 5% = 5/100 = 0.05
function shouldRejectH0(prob::Float64, sigLevel::Float64 = 0.05)::Bool
    @assert (0 <= prob <= 1) "prob must be in range [0-1]"
    @assert (0 <= sigLevel <= 1) "sigLevel must be in range [0-1]"
    return prob <= sigLevel
end

shouldRejectH0(tennisProbs[6])

true

Indeed he would. He would have to reject 𝐻0 and assume that one of
the players (here Peter) is a better player (𝐻𝐴).

Tennis - theoretical calculations
OK, to be sure of our conclusions let’s try the same with the
Distributions¹⁷⁵ package (imported as Dsts) that we met before.

¹⁷⁵https://juliastats.org/Distributions.jl/stable/

Remember one of the two tennis players must win a game (John or
Peter). So this is a binomial distributions we met before. We assume
(𝐻0) both of them play equally well, so the probability of any of them
winning is 0.5. Now we can proceed like this using a dictionary
comprehension similar to the one that we have met before (e.g. see
getProbs definition from Section  4.4 )

tennisTheorProbs = Dict(
    i => Dsts.pdf(Dsts.Binomial(6, 0.5), i) for i in 0:6
    )
tennisTheorProbs[6]

0.015624999999999977

Yep, the number is pretty close to tennisProbs[6] we got before
which is 0.01538. So we decide to go with 𝐻𝐴 and say that Peter is a
better player. Just in case I will place both distributions (experimental
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and theoretical) one below the other to make the comparison easier.
Behold

Figure 8:  Figure 8: Probability distribution for 6 tennis games if 𝐻0 is
true.

Notice that in order to get a satisfactory approximation of theoretical
probabilities a sufficiently large number of repetitions needs to be
ensured. Figure  8 (row 1, column 1) demonstrates an imprecise
probability estimation obtained when only 100 computer simulations
were used. In this case it could be noticed in few places, but it is
especially evident in the case of overly large bar at x = 4 (indicated by
the arrow).

Anyway, once we have warmed up we can even calculate the
probability using our knowledge from Section  4.3.1 . We can do this
since by assuming our null hypothesis (𝐻0) we basically compared the
result of a game between John and Peter to a fair coin’s toss (0 or 1,
John or Peter, heads or tails).
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The probability of Peter winning a single game is 𝑃(𝑃𝑒𝑡𝑒𝑟) = 1
2 =

0.5. Peter won all six games. In order to get two wins in a row, first he
had to won one game. In order to get three wins in a row first he had
to won two games in a row, and so on. So he had to win game 1 AND
game 2 AND game 3 AND … . Given the above, and what we stated in
Section  4.3.1 , here we deal with a conjunction of probabilities.
Therefore we use probability multiplication like so

tennisTheorProbWin6games = 0.5 * 0.5 * 0.5 * 0.5 * 0.5 * 0.5
# or
tennisTheorProbWin6games = 0.5 ^ 6

tennisTheorProbWin6games

0.015625

Compare it with tennisTheorProbs[6] calculated by Distributions
package

(tennisTheorProbs[6], tennisTheorProbWin6games)

(0.015624999999999977, 0.015625)

They are the same. The difference is caused by a computer
representation of floats and their rounding (as a reminder see Section
3.3.3 , and Section  3.9.2 ).

Anyway, I just wanted to present all three methods for two reasons.
First, that’s the way we checked our reasoning at math in primary
school (solving with different methods). Second, chances are that one
of the explanations may be too vague for you, if so help yourself to the
other methods :)

In general, as a rule of thumb you should remember that the null
hypothesis (𝐻0) assumes lack of differences/equality, etc. (and this is
what we assumed in this tennis example).
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One or two tails
Hopefully, the above explanations were clear enough. There is a small
nuance to what we did. In the beginning of Section  4.7.1 we said ‘To
prove their supremacy a player must win all six games’. A player, so
either John or Peter. Still, we calculated only the probability of Peter
winning the six games (tennisTheorProbs[6]), Peter and not John.
What we did there was calculating one tail probability¹⁷⁶ (see the

¹⁷⁶https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

figures in the link). Now, take a look at Figure  8 (e.g. bottom panel)
the middle of it is ‘body’ and the edges to the left and right are tails.

This approach (one-tailed test) is rather OK in our case. However, in
statistics it is frequently recommended to calculate two-tails
probability (usually this is the default option in many statistical
functions/packages). That is why at the beginning of Section  4.7.1 I
wrote ‘alternative assumption: one player is better than the other (this
is called alternative hypothesis, 𝐻𝐴)’.

Calculating the two-tailed probability is very simple, we can either add
tennisTheorProbs[6] + tennisTheorProbs[0] (remember 0 means
that John won all six games) or multiply tennisTheorProbs[6] by 2
(since the graph in Figure  8 is symmetrical).

(tennisTheorProbs[6] + tennisTheorProbs[0], tennisTheorProbs[6] * 2)

(0.031249999999999955, 0.031249999999999955)

Once we got it we can perform our reasoning one more time.

shouldRejectH0(tennisTheorProbs[6] + tennisTheorProbs[0])

true

In this case the decision is the same (but that is not always the case).
As I said before in general it is recommended to choose a two-tailed
test over a one-tailed test. Why? Let me try to explain this with
another example.
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Imagine I tell you that I’m a psychic that talks with the spirits and I
know a lot of the stuff that is hidden from mere mortals (like the rank
and suit of a covered playing card¹⁷⁷ ). You say you don’t believe me
and propose a simple test.

¹⁷⁷https://en.wikipedia.org/wiki/Playing_card

You take 10 random cards from a deck. My task is to tell you the color
(red or black). And I did, the only problem is that I was wrong every
single time! If you think that proves that your were right in the first
place then try to guess 10 cards in a row wrongly yourself (if you don’t
have cards on you go with 10 consecutive fair coin tosses).

It turns out that guessing 10 cards wrong is just as unlikely as
guessing 10 of them right (0.5^10 = 0.0009765625 or 1 per 1024 tries in
each case). This could potentially mean a few things, e.g.

• I really talk with the spirits, but in their language “red” means
“black”, and “black” means “red” (cultural fun fact: they say
Bulgarians nod their heads when they say “no”, and shake them for
“yes”),

• I live in one of 1024 alternative dimensions/realities and in this
reality I managed to guess all of them wrong, when the other
versions of me had mixed results, and that one version of me
guessed all of them right,

• I am a superhero and have an x-ray vision in my eyes so I saw the
cards, but I decided to tell them wrong to protect my secret identity,

• I cheated, and were able to see the cards beforehand, but decided to
mock you,

• or some other explanation is in order, but I didn’t think of it right
now.

The small probability only tells us that the result is unlikely to has
happened by chance alone. Still, you should always choose your null
(𝐻0) and alternative (𝐻𝐴) hypothesis carefully. Moreover, it is a good
idea to look at both ends of a probability distribution.
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All the errors that we make
Long time ago when I was a student I visited a local chess club. I was
late that day, and only one person was without a pair, Paul. I
introduced myself and we played a few games. In chess you can either
win, lose, or draw a game. Unfortunately, I lost all six games we played
that day. I was upset, I assumed I just encountered a better player. I
thought: “Too bad, but next week I will be on time and find someone
else to play with” (nobody likes loosing all the time). The next week I
came to the club, and again the only person without a pair was Paul
(just my luck). Still, despite the bad feelings I won all six games that
we played that day (what are the odds). Later on it turned out that me
and Paul are pretty well matched chess players (we played chess at a
similar level).

The story demonstrates that even when there is a lot of evidence (six
lost games during the first meeting) we can still make an error by
rejecting our null hypothesis (𝐻0).

In fact, whenever we do statistics we turn into judges, since we can
make a mistake in two ways (see Figure  9 ).

Figure 9:  Figure 9: A judge making a verdict. FP - false positive, FN -
false negative.

An accused is either guilty or innocent. A judge (or a jury in some
countries) sets a verdict based on the evidence.
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If the accused is innocent but is sentenced anyway then it is an error,
it is usually called type I error¹⁷⁸ (FP - false positive in Figure  9 ). Its

¹⁷⁸https://en.wikipedia.org/wiki/Type_I_and_type_II_errors

probability is denoted by the first letter of the Greek alphabet, so alpha
(α).

In the case of John and Peter playing tennis the type I probability was 
≤ 0.05. More precisely it was tennisTheorProbs[6] = 0.015625 (for a
one tailed test).

If the accused is guilty but is declared innocent then it is another type
of error, it is usually called type II error (FN - false negative in Figure
9 ). Its probability is denoted by the second letter of the Greek
alphabet, so beta (β). Beta helps us determine the power of a test¹⁷⁹ 

¹⁷⁹https://en.wikipedia.org/wiki/Power_of_a_test

(power = 1 - β), i.e. if 𝐻𝐴 is really true then how likely it is that we
will choose 𝐻𝐴 over 𝐻0.

So to sum up, in the judge analogy a really innocent person is 𝐻0
being true and a really guilty person is 𝐻𝐴 being true.

Unfortunately, most of the statistical textbooks that I’ve read revolve
around type I errors and alphas, whereas type II error is covered much
less extensively (hence my own knowledge of the topic is more
limited).

In the tennis example above we rejected 𝐻0, hence here we risk
committing the type I error. Therefore, we didn’t speak about the type
II error, but don’t worry we will discuss it in more detail in the
upcoming exercises at the end of this chapter (see Section  4.8.5 ).

Cutoff levels
OK, once we know what are the type I and type II errors it is time to
discuss their cutoff values.

Obviously, the ideal situation would be if the probabilities of both type
I and type II errors were exactly 0 (no mistakes is always the best). The
only problem is that this is not possible. In our tennis example one
player won all six games, and still some small risk of a mistake existed
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(tennisTheorProbs[6] = 0.015625). If you ever see a statistical
package reporting a p-value to be equal, e.g. 0.0000, then this is just
rounding to 4 decimal places and not an actual zero. So what are the
acceptable cutoff levels for 𝛼 (probability of type I error) and 𝛽
(probability of type II error).

The most popular choices for 𝛼 cutoff values are:

• 0.05, or
• 0.01

Actually, as far as I’m aware, the first of them (𝛼 = 0.05) was initially
proposed by Ronald Fisher¹⁸⁰ , a person sometimes named the father of

¹⁸⁰https://en.wikipedia.org/wiki/Ronald_Fisher

the XX-century statistics. This value was chosen arbitrarily and is
currently frowned upon by some modern statisticians as being to
lenient. Therefore, 0.01 is proposed as a more reasonable alternative.

As regards 𝛽 its two most commonly accepted cutoff values are:

• 0.2, or
• 0.1

Actually, as far as I remember the textbooks usually do not report
values for 𝛽, but for power of the test (if 𝐻𝐴 is really true then how
likely it is that we will choose 𝐻𝐴 over 𝐻0) to be 0.8 or 0.9. However,
since as we mentioned earlier power = 1 - 𝛽, then we can easily
calculate the value for this parameter.

OK, enough of theory, time for some practice. Whenever you’re ready
click the right arrow to proceed to the exercises that I prepared for
you.

Statistics intro - Exercises
So, here are some exercises that you may want to solve to get from this
chapter as much as you can (best option). Alternatively, you may read
the task descriptions and the solutions (and try to understand them).
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Exercise 1
Some mobile phones and cash dispensers prevent unauthorized access
to the resources by using a 4-digit PIN number.

What is the probability that a randomly typed number will be the right
one?

Hint. Calculate how many different numbers you can type. If you get
stuck, try to reduce the problem to 1- or 2-digit PIN number.

Exercise 2
A few years ago during a home party a few people bragged that they
can recognize beer blindly, just by taste, since, e.g. “the beer of brand X
is great, of brand Y is OK, but of brand Z tastes like piss” (hmm, how
could they tell?).

We decided to put that to the test. We bought six different beer brands.
One person poured them to cups marked 1-6. The task was to taste the
beer and correctly place a label on it.

What is the probability that a person would place correctly 6 labels on
6 different beer at random.

Hint. This task may be seen as ordering of different objects. As always
you may reduce the problem to a smaller one. For instance think how
many different orderings of 3 beer do we have.

Exercise 3
Do you still remember our tennis example from Section  4.7.1 , I hope
so. Let’s modify it a bit to solidify your understanding of the topic.

Imagine John and Peter played 6 games, but this time the result was
1-5 for Peter. Is the difference statistically significant at the crazy cutoff
level for 𝛼 equal to 0.15. Calculate the probability (the famous p-
values) for one- and two-tailed tests.

Exercise 4
In the opening to Section  4.7.5 I told you a story from the old times.
The day when I met my friend Paul in a local chess club and lost 6
games in a row while playing with him. So, here is a task for you. If we

110



were both equally good chess players at that time then what is the
probability that this happened by chance (to make it simpler do one-
tailed test)?

Exercise 5
Remember how in Section  4.7.5 we talked about a type II error. We
said that if we decide not to reject 𝐻0 we risk to commit a type II error
or β. It is FN, i.e. false negative, in our judge analogy from Section
4.7.5 (declaring a person that is really guilty to be innocent). In
statistics this is when the 𝐻𝐴 is true but we fail to say so and stay with
our initial hypothesis (𝐻0).

So here is the task.

Assume that the result of the six tennis games was 1-5 for Peter (like
in Section  4.8.3 ). Write a computer simulation that estimates the
probability of type II error that we commit in this case by not rejecting
𝐻0 (if the cutoff level for 𝛼 is equal to 0.05). To make it easier use one-
tailed probabilities.

Hint: assume that 𝐻𝐴 is true and that in reality Peter wins with John on
average with the ratio 5 to 1 (5 wins - 1 defeat).

Statistics intro - Solutions
In this sub-chapter you will find exemplary solutions to the exercises
from the previous section.

Solution to Exercise 1
The easiest way to solve this problem is to reduce it to a simpler one.

If the PIN number were only 1-digit, then the total number of
possibilities would be equal to 10 (numbers from 0 to 9).

For a 2-digit PIN the pattern would be as follow:

00
01
02
...
09
10
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11
12
...
19
20
21
...
98
99

So, for every number in the first location there are 10 numbers (0-9) in
the second location. Just like in a counter (see gif below), the number
on the left switches to the next only when 10 numbers on the right
changed beforehand.

Figure 10:  A counter (animation works only in an HTML document)
depicting rate of number changes.

Therefore in total we got numbers in the range 00-99, or to write it
mathematically 10 * 10 different numbers (numbers per pos. 1 *
numbers per pos. 2).

By extension the total number of possibilities for a 4-digit PIN is:

# (method1, method2, method3)
(10 * 10 * 10 * 10, 10^4, length(0:9999))

(10000, 10000, 10000)
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So 10’000 numbers. Therefore the probability for a random number
being the right one is 1/10_000 = 0.0001

Similar methodology is used to assess the strength of a password to an
internet website.

Solution to Exercise 2
OK, so let’s reduce the problem before we solve it.

If I had only 1 beer and 1 label then there is only one way to do it. The
label in my hand goes to the beer in front of me.

For 2 labels and 2 beer it goes like this:

a b
b a

I place one of two labels on a first beer, and I’m left with only 1 label
for the second beer. So, 2 possibilities in total.

For 3 labels and 3 beer the possibilities are as follow:

a b c
a c b

b a c
b c a

c a b
c b a

So here, for the first beer I can assign any of the three labels (a, b, or c).
Then I move to the second beer and have only two labels left in my
hand (if the first got a, then the second can get only b or c). Then I
move to the last beer with the last label in my hand (if the first two
were a and b then I’m left with c). In total I got 3 * 2 * 1 = 6
possibilities.
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It turns out this relationship holds also for bigger numbers. In
mathematics it can be calculated using the factorial¹⁸¹ function that is
already implemented in Julia (see the docs¹⁸² ).

¹⁸¹https://en.wikipedia.org/wiki/Factorial
¹⁸²https://docs.julialang.org/en/v1/base/math/#Base.factorial

Still, for practice we’re gonna implement one on our own with the
foreach we met in Section  3.6.4 .

function myFactorial(n::Int)::Int
    @assert n > 0 "n must be positive"
    product::Int = 1
    foreach(x -> product *= x, 1:n)
    return product
end

myFactorial(6)

720

Note: You may also just use Julia’s prod¹⁸³ function, e.g. prod(1:6)
= 720. Still, be aware that factorial numbers grow pretty fast, so
for bigger numbers, e.g. myFactorial(20) or above you might
want to change the definition of myFactorial to use BigInt that
we met in Section  3.9.5 .

¹⁸³https://docs.julialang.org/en/v1/base/collections/#Base.prod

So, the probability that a person correctly labels 6 beer at random is
round(1/factorial(6), digits=5) = 0.00139 = 1/720.

I guess that is the reason why out of 7 people that attempted to
correctly label 6 beer the results were as follows:

• one person correctly labeled 0 beer
• five people correctly labeled 1 beer
• one person correctly labeled 2 beer

I leave the conclusions to you.
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Solution to Exercise 3
OK, for the original tennis example (see Section  4.7.1 ) we answered
the question by using a computer simulation first (Section  4.7.2 ). For
a change, this time we will start with a ‘purely mathematical’
calculations. Ready?

In order to get the result of 1-5 for Peter we would have to get a series
of games like this one:

# 0 - John's victory, 1 - Peter's victory
0 1 1 1 1 1

Probability of either John or Peter winning under 𝐻0 (assumption that
they play equally well) is 12  = 0.5. So here we got a conjunction of
probabilities (John won AND Peter won AND Peter won AND …).
According to what we’ve learned in Section  4.3.1 we should multiply
the probabilities by each other.

Therefore, the probability of the result above is 0.5 * 0.5 * 0.5
* ... or 0.5 ^ 6 = 0.015625. But wait, there’s more. We can get such a
result (1-5 for Peter) in a few different ways, i.e.

0 1 1 1 1 1
# or
1 0 1 1 1 1
# or
1 1 0 1 1 1
# or
1 1 1 0 1 1
# or
1 1 1 1 0 1
# or
1 1 1 1 1 0

Note: For a big number of games it is tedious and boring to write
down all the possibilities by hand. In this case you may use Julia’s
binomial¹⁸⁴ function, e.g. binomial(6, 5) = 6. This tells us how
many different fives of six objects can we get.

¹⁸⁴https://docs.julialang.org/en/v1/base/math/#Base.binomial

115



As we said a moment ago, each of this series of games occurs with the
probability of 0.015625. Since we used OR (see the comments in the
code above) then according to Section  4.3.1 we can add 0.015625 six
times to itself (or multiply it by 6). So, the probability is equal to:

prob1to5 = (0.5^6) * 6 # parenthesis were placed for the sake of clarity
prob1to5

0.09375

Of course we must remember what our imaginary statistician said in
Section  4.7.1 : “I assume that 𝐻0 is true. Then I will conduct the
experiment and record then result. I will calculate the probability of
such a result (or more extreme result) happening by chance.”

More extreme than 1-5 for Peter is 0-6 for Peter, we previously (see
Section  4.7.3 ) calculated it to be 0.5^6 = 0.015625. Finally, we can get
our p-value (for one-tailed test)

prob1to5 = (0.5^6) * 6 # parenthesis were placed for the sake of clarity
prob0to6 = 0.5^6
probBothOneTail = prob1to5 + prob0to6

probBothOneTail

0.109375

Note: Once you get used to calculating probabilities you should
use quick methods like those from Distributions package
(presented below), but for now it is important to understand what
happens here, hence those long calculations (of probBothOneTail)
shown here.

Let’s quickly verify it with other methods we met before (e.g. in
Section  4.7 )

# for better clarity each method is in a separate line
(
    probBothOneTail,
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    1 - Dsts.cdf(Dsts.Binomial(6, 0.5), 4),
    Dsts.pdf.(Dsts.Binomial(6, 0.5), 5:6) |> sum,
    tennisProbs[5] + tennisProbs[6] # experimental probability
)

(0.109375, 0.109375, 0.10937499999999988, 0.11052000000000001)

Yep, they all appear the same (remember about floats rounding and the
difference between theory and practice from Section  4.4 ).

So, is it significant at the crazy cutoff level of 𝛼 = 0.15?

shouldRejectH0(probBothOneTail, 0.15)

true

Yes, it is (we reject 𝐻0 in favor of 𝐻𝐴). And now for the two-tailed test
(so either Peter wins at least 5 to 1 or John wins with the exact same
ratio).

# remember the probability distribution is symmetrical, so *2 is OK here
shouldRejectH0(probBothOneTail * 2, 0.15)

false

Here we cannot reject our 𝐻0.

Of course we all know that this was just for practice, because the
acceptable type I error cutoff level is usually 0.05 or 0.01. In this case,
according to both the one-tailed and two-tailed tests we failed to reject
the 𝐻0.

BTW, this shows how important it is to use a strict mathematical
reasoning and to adhere to our own methodology. I don’t know about
you but when I was a student I would have probably accepted the
result 1-5 for Peter as an intuitive evidence that he is a better tennis
player.

We will see how to speed up the calculations in this solution in one of
the upcoming chapters (see Section  6.2 ).
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Solution to Exercise 4
OK, there maybe more than one way to solve this problem.

Solution 4.1

In chess, a game can end with one of the three results: white win,
black win or a draw. If we assume each of those options to be equally
likely for a two well matched chess players then the probability of
each of the three results happening by chance is 1/3 (this is our 𝐻0).

So, similarly to our tennis example from Section  4.7.1 the probability
(one-tailed test) of Paul winning all six games is

# (1/3) that Paul won a single game AND six games in a row (^6)
(
round((1/3)^6, digits=5),
round(Dsts.pdf(Dsts.Binomial(6, 1/3), 6), digits=5)
)

(0.00137, 0.00137)

So, you might think right now ‘That task was a piece of cake’ and you
would be right. But wait, there’s more.

Solution 4.2

In chess played at a top level (>= 2500 ELO) the most probable
outcome is draw. It occurs with a frequency of roughly 50% (see this
Wikipedia’s page¹⁸⁵ ). Based on that we could assume that for a two
equally strong chess players the probability of:

¹⁸⁵https://en.wikipedia.org/wiki/Draw_(chess)#Frequency_of_draws

• white winning is 1/4,
• draw is 2/4 = 1/2,
• black winning is 1/4

So under those assumptions the probability that Paul won all six
games is
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# (1/4) that Paul won a single game AND six games in a row (^6)
(
round((1/4)^6, digits=5),
round(Dsts.pdf(Dsts.Binomial(6, 1/4), 6), digits=5)
)

(0.00024, 0.00024)

So a bit lower, than the probability we got before (which was (1/3)^6
= 0.00137).

OK, so I presented you with two possible solutions. One gave the
probability of (1/3)^6 = 0.00137, whereas the other (1/4)^6 = 0.00024.
So, which one is it, which one is the true probability? Well, most likely
neither. All they really are is just some estimations of the true
probability and they are only as good as the assumptions that we
make. After all: “All models are wrong, but some are useful”¹⁸⁶ .

¹⁸⁶https://en.wikipedia.org/wiki/All_models_are_wrong

If the assumptions are correct, then we can get a pretty good estimate.
Both the Solution 4.1 and Solution 4.2 got reasonable assumptions
but they are not necessarily true (e.g. I’m not a >= 2500 ELO chess
player). Still, for practical reasons they may be more useful than just
guessing, for instance if you were ever to bet on a result of a chess
game/match (do you remember the bets from Section  4.5 ?). They may
not be good enough for you to win such a bet, but they could allow to
reduce the losses.

However, let me state it clearly. The reason I mentioned it is not for
you to place bets on chess matches but to point on similarities to
statistical practice.

For instance, there is a method named one-way ANOVA¹⁸⁷ (we will
discuss it, e.g. in the upcoming Section  5.4 ). Sometimes the analysis

¹⁸⁷https://en.wikipedia.org/wiki/One-way_analysis_of_variance

requires us to conduct a so called post-hoc test¹⁸⁸ . There are quite a

¹⁸⁸https://en.wikipedia.org/wiki/Post_hoc_analysis

few of them to choose from (see the link above) and they rely on
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different assumptions. For instance one may do the Fisher’s LSD test
or the Tukey’s HSD test. Which one to choose? I think you should
choose the test that is better suited for the job (based on your
knowledge and recommendations from the experts).

Regarding the above mentioned tests. The Fisher’s LSD test was
introduced by Ronald Fisher¹⁸⁹ (what a surprise). LSD stands for Least

¹⁸⁹https://en.wikipedia.org/wiki/Ronald_Fisher

Significant Difference. Some time later John Tukey¹⁹⁰ considered it to

¹⁹⁰https://en.wikipedia.org/wiki/John_Tukey

be too lenient (too easily rejects 𝐻0 and declares significant
differences) and offered his own test (operating on different
assumptions) as an alternative. For that reason it was named HSD
which stands for Honestly Significant Difference. I heard that
statisticians recommend to use the latter one (although in practice I
saw people use either of them).

Solution to Exercise 5
OK, so we assume that Peter is a better player than John and he
consistently wins with John. On average he wins with the ratio 5 to 1
(5:1) with his opponent (this is our true 𝐻𝐴). Let’s write a function
that gives us the result of the experiment if this 𝐻𝐴 is true.

function getResultOf1TennisGameUnderHA()::Int
    # 0 - John wins, 1 - Peter wins
    return Rand.rand([0, 1, 1, 1, 1, 1], 1)
end

function getResultOf6TennisGamesUnderHA()::Int
    return [getResultOf1TennisGameUnderHA() for _ in 1:6] |> sum
end

The code is fairly simple. Let me just explain one part. Under 𝐻𝐴 Peter
wins 5 out of six games and John 1 out of 6, therefore we choose one
number out of [0, 1, 1, 1, 1, 1] (0 - John wins, 1 - Peter wins)
with our Rand.rand([0, 1, 1, 1, 1, 1], 1).
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Note: If the 𝐻𝐴 would be let’s say 1:99 for Peter, then to save you
some typing I would recommend to do something like, e.g. return
(Rand.rand(1:100, 1) <= 99) ? 1 : 0. It draws one random
number out of 100 numbers. If the number is 1-99 then it returns
1 (Peter wins) else it returns 0 (John wins). BTW. When a
probability of an event is small (e.g. ≤ 1%) then to get its more
accurate estimate you could/should increase the number of
computer simulations [e.g. numOfSimul below should be
1_000_000 (shorter form 10^6) instead of 100_000 (shorter form
10^5)].

Alternatively the code from the snippet above could be shortened to

# here no getResultOf1TennisGameUnderHA is needed
function getResultOf6TennisGamesUnderHA()::Int
    return Rand.rand([0, 1, 1, 1, 1, 1], 6) |> sum
end

Now let’s run the experiment, let’s say 100_000 times, and see how
many times we will fail to reject 𝐻0. For that we will need the
following helper functions

function play6tennisGamesGetPvalue()::Float64
    # result when HA is true
    result::Int = getResultOf6TennisGamesUnderHA()
    # probability based on which we may decide to reject H0
    oneTailPval::Float64 = Dsts.pdf.(Dsts.Binomial(6, 0.5), result:6) |>
sum
    return oneTailPval
end

function didFailToRejectHO(pVal::Float64)::Bool
    return pVal > 0.05
end

In play6tennisGamesGetPvalue we conduct an experiment and get a
p-value (probability of type 1 error). First we get the result of the
experiment under 𝐻𝐴, i.e we assume the true probability of Peter
winning a game with John to be 5/6 = 0.8333. We assign the result of
those 6 games to a variable result. Next we calculate the probability
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of obtaining such a result by chance under 𝐻0, i.e. probability of Peter
winning is 1/2 = 0.5 as we did in Section  4.9.3 . We return that
probability.

Previously we said that the accepted cutoff level for alpha is 0.05 (see
Section  4.7.6 ). If p-value ≤ 0.05 we reject 𝐻0 and choose 𝐻𝐴. Here
for 𝛽 we need to know whether we fail to reject 𝐻0 hence
didFailToRejectHO function with pVal > 0.05.

And now, we can go to the promised 100_000 simulations.

numOfSimul = 100_000
Rand.seed!(321)
notRejectedH0 = [
    didFailToRejectHO(play6tennisGamesGetPvalue()) for _ in 1:numOfSimul
    ]
probOfType2error = sum(notRejectedH0) / length(notRejectedH0)

0.66384

We run our experiment 100_000 times and record whether we failed to
reject 𝐻0. We put that to notRejectedH0 using comprehensions (see
Section  3.6.3 ). We get a vector of Bools (e.g. [true, false, true]).
When used with sum function Julia treats true as 1 and false as 0. We
can use that to get the average of true (fraction of times we failed to
reject 𝐻0). This is the probability of type II error, it is equal to 0.66384.
We can use it to calculate the power of a test (power = 1 - β).

function getPower(beta::Float64)::Float64
    @assert (0 <= beta <= 1) "beta must be in range [0-1]"
    return 1 - beta
end
powerOfTest = getPower(probOfType2error)

powerOfTest

0.33616

Finally, we get our results. We can compare them with the cutoff
values from Section  4.7.6 , e.g. 𝛽 ≤ 0.2, 𝑝𝑜𝑤𝑒𝑟 ≥ 0.8. So it turns out
that if in reality Peter is a better tennis player than John (and on
average wins with the ratio 5:1) then we will be able to confirm that
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roughly in 3 experiments out of 10 (experiment - the result of 6 games
that they play with each other). This is because the power of a test
should be ≥ 0.8 (accepted by statisticians), but it is 0.33616 (estimated
in our computer simulation). Here we can either say that they both
(John and Peter) play equally well (we did not reject 𝐻0) or make them
play a greater number of games with each other in order to confirm
that Peter consistently wins with John on average 5 to 1.

If you want to see a graphical representation of the solution to exercise
5 take a look at the figure below.

Figure 11:  Figure 10: Graphical representation of the estimation
process for type II error and the power of a test.

The top panels display the probability distributions for our experiment
(6 games of tennis) under 𝐻0 (red bars) and 𝐻𝐴 (blue bars). Notice,
that the blue bars for 0, 1, and 2 are so small that they are barely (or
not at all) visible on the graph. The black dotted vertical line is a cutoff
level for type I error (or 𝛼), which is 0.05. The bottom panel contains
the distributions superimposed one on the other. The probability of
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type II error (or 𝛽) is the sum of the heights of the blue bar(s) to the
left from the black dotted vertical line (the cutoff level for type I error).
The power of a test is the sum of the heights of the blue bar(s) to the
right from the black dotted vertical line (the cutoff level for type I
error).

Hopefully the explanations above were clear enough. Still, the
presented solution got a few flaws, i.e. we hard coded 6 into our
functions (e.g. getResultOf1TennisGameUnderHA,
play6tennisGamesGetPvalue), moreover running 100_000 simulations
is probably less efficient than running purely mathematical
calculations. Let’s try to add some plasticity and efficiency to our code
(plus let’s check the accuracy of our computer simulation).

# to the right from that point on x-axis (>point) we reject H0 and
choose HA
# n - number of trials (games)
function getXForBinomRightTailProb(n::Int, probH0::Float64,
                                   rightTailProb::Float64)::Int
    @assert (0 <= rightTailProb <= 1) "rightTailProb must be in range
[0-1]"
    @assert (0 <= probH0 <= 1) "probH0 must be in range [0-1]"
    @assert (n > 0) "n must be positive"
    return Dsts.cquantile(Dsts.Binomial(n, probH0), rightTailProb)
end

# n - number of trials (games), x - number of successes (Peter's wins)
# returns probability (under HA) from far left up to (and including) x
function getBetaForBinomialHA(n::Int, x::Int, probHA::Float64)::Float64
    @assert (0 <= probHA <= 1) "probHA must be in range [0-1]"
    @assert (n > 0) "n must be positive"
    @assert (x >= 0) "x mustn't be negative"
    return Dsts.cdf(Dsts.Binomial(n, probHA), x)
end

Note: The above functions should work correctly if probH0 <
probHA, i.e. the probability distribution under 𝐻0 is on the left
and the probability distribution under 𝐻𝐴 is on the right side of a
graph, i.e. the case you see in Figure  10 .

The function getXForBinomRightTailProb returns a value (number of
Peter’s wins, number of successes, value on x-axis in Figure  10 ) above
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which we reject 𝐻0 in favor of 𝐻𝐴 (if we feed it with cutoff for 𝛼
equal to 0.05). Take a look at Figure  10 , it returns the value on x-axis
to the right of which the sum of heights of the red bars is lower than
the cutoff level for alpha (type I error). It does so by wrapping around
Dsts.cquantile¹⁹¹ function (that runs the necessary mathematical
calculations) for us.

¹⁹¹https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.
cquantile-Tuple%7BUnivariateDistribution,%20Real%7D

Once we get this cutoff point (number of successes, here number of
Peter’s wins) we can feed it as an input to getBetaForBinomialHA.
Again, take a look at Figure  10 , it calculates for us the sum of the
heights of the blue bars from the far left (0 on x-axis) up-to the
previously obtained cutoff point (the height of that bar is also
included). Let’s see how it works in practice.

xCutoff = getXForBinomRightTailProb(6, 0.5, 0.05)
probOfType2error2 = getBetaForBinomialHA(6, xCutoff, 5/6)
powerOfTest2 = getPower(probOfType2error2)

(probOfType2error, probOfType2error2, powerOfTest, powerOfTest2)

(0.66384, 0.6651020233196159, 0.33616, 0.3348979766803841)

They appear to be close enough which indicates that our calculations
with the computer simulation were correct.

BONUS

Sample size estimation.

As a bonus to this exercise let’s talk about sample sizes.

Notice that after solving this exercise we said that if Peter is actually a
better player than John and wins on average 5:1 with his opponent
then still, most likely we will not be able to show this with 6 tennis
games (powerOfTest2 = 0.3349). So, if ten such experiments would be
conducted around the world for similar Peters and Johns then roughly
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only in three of them Peter would be declared a better player after
running statistical tests. That doesn’t sound right.

In order to overcome this at the onset of their experiment a statistician
should also try to determine the proper sample size. First, he starts by
asking himself a question: “how big difference will make a difference”.
This is an arbitrary decision (at least a bit). Still, I think we can all
agree that if Peter would win with John on average 99:1 then this
would make a practical difference (probably John would not like to
play with him, what’s the point if he would be still loosing). OK, and
how about Peter wins with John on average 51:49. This does not make
a practical difference. Here they are pretty well matched and would
play with each other since it would be challenging enough for both of
them and each one could win a decent amount of games to remain
satisfied. Most likely, they would be even unaware of such a small
difference.

In real life a physician could say, e.g. “I’m going to test a new drug that
should reduce the level of ‘bad cholesterol’ ( LDL-C¹⁹² ). How big

¹⁹²https://en.wikipedia.org/wiki/Low-density_lipoprotein

reduction would I like to detect? Hmm, I know, 30 [mg/dL] or more
because it reduces the risk of a heart attack by 50%” or “By at least 25
[mg/dL] because the drug that is already on the market reduces it by
25 [mg/dL]” (the numbers were made up by me, I’m not a physician).

Anyway, once a statistician gets the difference that makes a difference
he tries to estimate the sample size by making some reasonable
assumptions about rest of the parameters.

In our tennis example we could write the following function for
sample size estimation

# checks sample sizes between start and finish (inclusive, inclusive)
# assumes that probH0 is 0.5
function getSampleSizeBinomial(probHA::Float64,
    cutoffBeta::Float64=0.2,
    cutoffAlpha::Float64=0.05,
    twoTail::Bool=true,
    start::Int=6, finish::Int=40)::Int
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    # other probs are asserted in the component functions that use them
    @assert (0 <= cutoffBeta <= 1) "cutoffBeta must be in range [0-1]"
    @assert (start > 0 && finish > 0) "start and finish must be
positive"
    @assert (start < finish) "start must be smaller than finish"

    probH0::Float64 = 0.5
    sampleSize::Int = -99
    xCutoffForAlpha::Int = 0
    beta::Float64 = 1.0

    if probH0 >= probHA
        probHA = 1 - probHA
    end
    if twoTail
        cutoffAlpha = cutoffAlpha / 2
    end

    for n in start:finish
        xCutoffForAlpha = getXForBinomRightTailProb(n, probH0,
cutoffAlpha)
        beta = getBetaForBinomialHA(n, xCutoffForAlpha, probHA)
        if beta <= cutoffBeta
            sampleSize = n
            break
        end
    end

    return sampleSize
end

Maybe that is not the most efficient method, but it should do the trick.

First, we initialize a few variables that we will use later (probH0,
sampleSize, xCutoffForAlpha, beta). Then we compare probH0 with
probHA. We do this since getXForBinomRightTailProb and
getBetaForBinomialHA should work correctly only when probH0 <
probHA (see the note under the code snippet with the functions
definitions). Therefore we need to deal with the case when it is
otherwise (if probH0 >= probHA). We do this by subtracting probHA
from 1 and making it our new probHA (probHA = 1 - probHA).
Because of that if we ever type, e.g. probHA = 1/6 = 0.166, then the
function will transform it to probHA = 1 - 1/6 = 5/6 = 0.833 (since in our
case the sample size required to demonstrate that Peter wins on
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average 1 out of 6 games, is the same as the sample size required to
show that John wins on average 5 out of 6 games).

Once we are done with that we go to another checkup. If we are
interested in two-tailed probability (twoTail) then we divide the
number (cutoffAlpha = 0.05) by two. Before 0.05 went to the right
side (see the black dotted line in Figure  10 ), now we split it, 0.025
goes to the left side, 0.025 goes to the right side of the probability
distribution. This makes sense since before (see Section  4.7.4 ) we
multiplied one-tailed probability by 2 to get the two-tailed probability,
here we do the opposite. We can do that because the probability
distribution under 𝐻0 (see the upper left panel in Figure  10 ) is
symmetrical (that is why you mustn’t change the value of probH0 in
the body of getSampleSizeBinomial).

Finally, we use the previously defined functions
(getXForBinomRightTailProb and getBetaForBinomialHA) and
conduct a series of experiments for different sample sizes (between
start and finish). Once the obtained beta fulfills the requirement
(beta <= cutoffBeta) we set sampleSize to that value (sampleSize =
n) and stop subsequent search with a break statement (so if
sampleSize of 6 is OK, we will not look at larger sample sizes). If the
for loop terminates without satisfying our requirements then the
value of -99 (sampleSize was initialized with it) is returned. This is an
impossible value for a sample size. Therefore it points out that the
search failed. Let’s put it to the test.

In this exercise we said that Peter wins with John on average 5:1 (𝐻𝐴,
prob = 5/6 = 0.83). So what is the sample size necessary to confirm that
with the acceptable type I error (𝑎𝑙𝑝ℎ𝑎 ≤ 0.05) and type II error (𝛽 ≤
0.2) cutoffs.

# for one-tailed test
sampleSizeHA5to1 = getSampleSizeBinomial(5/6, 0.2, 0.05, false)
sampleSizeHA5to1

13
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OK, so in order to be able to detect such a big difference (5:1, or even
bigger) between the two tennis players they would have to play 13
games with each other (for one-tailed test). To put it into perspective
and compare it with Figure  10 look at the graph below.

Figure 12:  Figure 11: Graphical representation of type II error and the
power of a test for 13 tennis games between Peter and John.

If our function worked well then the sum of the heights of the blue
bars to the right of the black dotted line should be ≥ 0.8 (power of the
test) and to the left should be ≤ 0.2 (type II error or 𝛽).

(
    # alternative to the line below:
    # 1 - Dsts.cdf(Dsts.Binomial(13, 5/6), 9),
    Dsts.pdf.(Dsts.Binomial(13, 5/6), 10:13) |> sum,
    Dsts.cdf(Dsts.Binomial(13, 5/6), 9)
)

(0.841922621916511, 0.15807737808348937)
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Yep, that’s correct. So, under those assumptions in order to confirm
that Peter is a better tennis player he would have to win ≥ 10 games
out of 13.

And how about the two-tailed probability (we expect the number of
games to be greater).

# for two-tailed test
getSampleSizeBinomial(5/6, 0.2, 0.05)

17

Here we need 17 games to be sufficiently sure we can prove Peter’s
supremacy.

OK. Let’s give our getSampleSizeBinomial one more swing. How
about if Peter wins with John on average 4:2 (𝐻𝐴)?

# for two-tailed test
sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05)
sampleSizeHA4to2

-99

Hmm, -99, so it will take more than 40 games (finish::Int = 40).
Now, we can either stop here (since playing 40 games in a row is too
time and energy consuming so we resign) or increase the value for
finish like so

# for two-tailed test
sampleSizeHA4to2 = getSampleSizeBinomial(4/6, 0.2, 0.05, true, 6, 100)
sampleSizeHA4to2

72

Wow, if Peter is better than John in tennis and on average wins 4:2
then it would take 72 games to be sufficiently sure to prove it (who
would have thought).

Anyway, if you ever find yourself in need to determine sample size, 𝛽
or the power of a test (not only for one-sided tests as we did here) then
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you should probably consider using PowerAnalyses.jl¹⁹³ which is on
MIT¹⁹⁴ license.

¹⁹³https://github.com/rikhuijzer/PowerAnalyses.jl
¹⁹⁴https://en.wikipedia.org/wiki/MIT_License

OK, I think you deserve some rest before moving to the next chapter
so why won’t you take it now.
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Comparisons - continuous data

OK, we finished the previous chapter with hypothesis testing and
calculating probabilities for binomial data (bi - two nomen - name),
e.g. number of successes (wins of Peter in tennis).

In this chapter we are going to explore comparisons between the
groups containing data on a continuous scale (like the height from
Section  4.6 ).

Chapter imports
Later in this chapter we are going to use the following libraries

import CairoMakie as Cmk
import CSV as Csv
import DataFrames as Dfs
import Distributions as Dsts
import HypothesisTests as Ht
import MultipleTesting as Mt
import Random as Rand
import Statistics as Stats

If you want to follow along you should have them installed on your
system. A reminder of how to deal (install and such) with packages
can be found here¹⁹⁵ . But wait, you may prefer to use Project.toml

¹⁹⁵https://docs.julialang.org/en/v1/stdlib/Pkg/

and Manifest.toml files from the code snippets for this chapter¹⁹⁶ to
install the required packages. The instructions you will find here¹⁹⁷ .

¹⁹⁶https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
¹⁹⁷https://pkgdocs.julialang.org/v1/environments/

The imports will be placed in the code snippet when first used, but I
thought it is a good idea to put them here, after all imports should be
at the top of your file (so here they are at the top of the chapter).
Moreover, that way they will be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of
unknown functionality, just go to the code snippets mentioned above
and run the code from the *.jl file. Once you have done that you can
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always extract a small piece of it and test it separately (modify and
experiment with it if you wish).

One sample Student’s t-test
Imagine that in your town there is a small local brewery that produces
quite expensive but super tasty beer. You like it a lot, but you got an
impression that the producer is not being honest with their customers
and instead of the declared 500 [mL] of beer per bottle, he pours a bit
less. Still, there is little you can do to prove it. Or can you?

You bought 10 bottles of beer (ouch, that was expensive!) and
measured the volume of fluid in each of them. The results are as
follows

# a representative sample
beerVolumes = [504, 477, 484, 476, 519, 481, 453, 485, 487, 501]

On a graph the volume distribution looks like this (it was drawn with
Cmk.hist¹⁹⁸ function).

¹⁹⁸https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#
hist
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Figure 13:  Figure 12: Histogram of beer volume distribution for 10
beer (fictitious data).

You look at it and it seems to resemble a bit the bell shaped curve that
we discussed in the Section  4.6 . This makes sense. Imagine your task
is to pour let’s say 1’000 bottles daily with 500 [mL] of beer in each
with a big mug (there is an erasable mark at a bottle’s neck). Most
likely the volumes would oscillate around your goal volume of 500
[mL], but they would not be exact. Sometimes in a hurry you would
add a bit more, sometimes a bit less (you could not waste time to
correct it). So it seems like a reasonable assumption that the 1’000
bottles from our example would have a roughly bell shaped (aka
normal) distribution of volumes around the mean.

Now you can calculate the mean and standard deviation for the data

import Statistics as Stats

meanBeerVol = Stats.mean(beerVolumes)
stdBeerVol = Stats.std(beerVolumes)
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(meanBeerVol, stdBeerVol)

(486.7, 18.055777776410274)

Hmm, on average there was 486.7 [mL] of beer per bottle, but the
spread of the data around the mean is also considerable (sd = 18.06
[mL]). The lowest value measured was 453 [mL], the highest value
measured was 519 [mL]. Still, it seems that there is less beer per bottle
than expected, but is it enough to draw a conclusion that the real mean
in the population of our 1’000 bottles is ≈ 487.0 [mL] and not 500 [mL]
as it should be? Let’s try to test that using what we already know
about the normal distribution (see Section  4.6 ), the three sigma rule
(Section  4.6.1 ) and the Distributions package (Section  4.6.2 ).

Let’s assume for a moment that the true mean for volume of fluid in
the population of 1’000 beer bottles is meanBeerVol = 486.7 [mL] and
the true standard deviation is stdBeerVol = 18.06 [mL]. That would be
great because now, based on what we’ve learned in Section  4.6.2 we
can calculate the probability that a random bottle of beer got >500
[mL] of fluid (or % of beer bottles in the population that contain >500
[mL] of fluid). Let’s do it

import Distributions as Dsts

# how many std. devs is value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64
    return (value - mean)/sd
end

expectedBeerVolmL = 500

fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),
    getZScore(expectedBeerVolmL, meanBeerVol, stdBeerVol))
fractionBeerAbove500mL = 1 - fractionBeerLessEq500mL

fractionBeerAbove500mL

0.2306808956300721
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I’m not going to explain the code above since for reference you can
always check Section  4.6.2 . Still, under those assumptions roughly
0.23 or 23% of beer bottles contain more than 500 [mL] of fluid. In
other words under these assumptions the probability that a random
beer bottle contains >500 [mL] of fluid is 0.23 or 23%.

There are 2 problems with that solution.

Problem 1

It is true that the mean from the sample is our best estimate of the
mean in the population (here 1’000 beer bottles poured daily).
However, statisticians proved that instead of the standard deviation
from our sample we should use the standard error of the mean¹⁹⁹ . It

¹⁹⁹https://en.wikipedia.org/wiki/Standard_error

describes the spread of sample means around the true population
mean and it can be calculated as follows

𝑠𝑒𝑚 = 𝑠𝑑√
𝑛 , where

sem - standard error of the mean

sd - standard deviation

n - number of observations in the sample

Let’s enclose it into Julia code

function getSem(vect::Vector{<:Real})::Float64
    return Stats.std(vect) / sqrt(length(vect))
end

Now we get a better estimate of the probability

fractionBeerLessEq500mL = Dsts.cdf(Dsts.Normal(),
    getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))
fractionBeerAbove500mL = 1 - fractionBeerLessEq500mL

fractionBeerAbove500mL

0.00992016769999493
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Under those assumptions the probability that a beer bottle contains
>500 [mL] of fluid is roughly 0.01 or 1%.

So, to sum up. Here, we assumed that the true mean in the population
is our sample mean (𝜇 = meanBeerVol). Next, if we were to take many
small samples like beerVolumes and calculate their means then they
would be normally distributed around the population mean (here 𝜇 =
meanBeerVol) with 𝜎 (standard deviation in the population) =
getSem(beerVolumes). Finally, using the three sigma rule (see Section
4.6.1 ) we check if our hypothesized mean (expectedBeerVolmL) lies
within roughly 2 standard deviations (here approximately 2 sems) from
the assumed population mean (here 𝜇 = meanBeerVol).

Problem 2

The sample size is small (length(beerVolumes) = 10) so the
underlying distribution is quasi-normal (quasi - almost, as it were). It is
called a t-distribution²⁰⁰ (for comparison of an exemplary normal and t-

²⁰⁰https://en.wikipedia.org/wiki/Student%27s_t-distribution

distribution see the figure below). Therefore to get a better estimate of
the probability we should use a t-distribution.
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Figure 14:  Figure 13: Comparison of normal and t-distribution with 4
degrees of freedom (df = 4).

Luckily our Distributions package got the t-distribution included
(see the docs²⁰¹ ). As you remember the normal distribution required

²⁰¹https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.TDist

two parameters that described it: the mean and the standard deviation.
The t-distribution requires only the degrees of freedom²⁰² . The concept

²⁰²https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)

is fairly easy to understand. Imagine that we recorded body masses of
3 people in the room: Paul, Peter, and John.

peopleBodyMassesKg = [84, 94, 78]

sum(peopleBodyMassesKg)

256

As you can see the sum of those body masses is 256 [kg]. Notice,
however, that only two of those masses are independent or free to
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change. Once we know any two of the body masses (e.g. 94, 78) and
the sum: 256, then the third body mass must be equal to
sum(peopleBodyMassesKg) - 94 - 78 = 84 (it is determined, it cannot
just freely take any value). So in order to calculate the degrees of
freedom we type length(peopleBodyMassesKg) - 1 = 2. Since our
sample size is equal to length(beerVolumes) = 10 then it will follow a
t-distribution with length(beerVolumes) - 1 = 9 degrees of freedom.

So the probability that a beer bottle contains >500 [mL] of fluid is

function getDf(vect::Vector{<:Real})::Int
    return length(vect) - 1
end

fractionBeerLessEq500mL = Dsts.cdf(Dsts.TDist(getDf(beerVolumes)),
    getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)))
fractionBeerAbove500mL = 1 - fractionBeerLessEq500mL

fractionBeerAbove500mL

0.022397253591088906

Note: The z-score (number of standard deviations above or below
the mean) for a t-distribution is called the t-score or t-statistics (it
is calculated with sem instead of sd).

Finally, we got the result. Based on our representative sample
(beerVolumes) and the assumptions we made we can see that the
probability that a random beer contains >500 [mL] of fluid (500 [mL] is
stated on a label) is fractionBeerAbove500mL = 0.022 or 2.2%
(remember, this is one-tailed probability, the two-tailed probability is
0.022 * 2 = 0.044 = 4.4%).

Given that the cutoff level for 𝛼 (type I error) from Section  4.7.5 is 0.05
we can reject our 𝐻0 (the assumption that 500 [mL] comes from the
population with the mean approximated by 𝜇 = meanBeerVol = 486.7
[mL] and the standard deviation approximated by 𝜎 = sem = 5.71
[mL]).
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In conclusion, our hunch was right (“…you got an impression that the
producer is not being honest with their customers…”). The owner of
the local brewery is dishonest and intentionally pours slightly less
beer (on average expectedBeerVolmL - meanBeerVol = 13.0 [mL]).
Now we can go to him and get our money back, or alarm the proper
authorities for that monstrous crime. Fun fact: the story has it that the
code of Hammurabi²⁰³ (circa 1750 BC) was the first to punish for diluting

²⁰³https://en.wikipedia.org/wiki/Code_of_Hammurabi

a beer with water (although it seems to be more of a legend). Still, this is
like 2-3% beer (≈13/500 = 0.026) in a bottle less than it should be and
the two-tailed probability (fractionBeerAbove500mL * 2 = 0.045) is
not much less than the cutoff for type 1 error equal to 0.05 (we may
want to collect a bigger sample and change the cutoff to 0.01).

HypothesisTests package
The above paragraphs were to further your understanding of the topic.
In practice you can do this much faster using HypothesisTests²⁰⁴ 
package.

²⁰⁴https://juliastats.org/HypothesisTests.jl/stable/

In our beer example you could go with this short snippet (see the
docs²⁰⁵ for Ht.OneSampleTTest)

²⁰⁵https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test

import HypothesisTests as Ht

Ht.OneSampleTTest(beerVolumes, expectedBeerVolmL)

One sample t-test
-----------------
Population details:
    parameter of interest:   Mean
    value under h_0:         500
    point estimate:          486.7
    95% confidence interval: (473.8, 499.6)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           0.0448
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Details:
    number of observations:   10
    t-statistic:              -2.329353706113303
    degrees of freedom:       9
    empirical standard error: 5.70973826993069

Let’s compare it with our previous results

(
expectedBeerVolmL, # value under h_0
meanBeerVol, # point estimate
fractionBeerAbove500mL * 2, # two-sided p-value
getZScore(expectedBeerVolmL, meanBeerVol, getSem(beerVolumes)),# t-
statistic
getDf(beerVolumes), # degrees of freedom
getSem(beerVolumes) # empirical standard error
)

(500, 486.7, 0.04479450718217781, 2.329353706113303, 9,
5.70973826993069)

The numbers are pretty much the same (and they should be if the
previous explanation was right). The t-statistic is positive in our case
because getZScore subtracts mean from value (value - mean) and
some packages (like HypothesisTests) swap the numbers.

The value that needs to be additionally explained is the 95% confidence
interval²⁰⁶ from the output of HypothesisTests above. All it means is

²⁰⁶https://en.wikipedia.org/wiki/Confidence_interval

that: if we were to run our experiment with 10 beers 100 times and
calculate 95% confidence intervals 100 times then 95 of the intervals
would contain the true mean from the population. Sometimes people
(over?)simplify it and say that this interval [in our case (473.8, 499.6)]
contains the true mean from the population with probability of 95%
(but that isn’t necessarily the same what was stated in the previous
sentence). The narrower interval means better, more precise estimate.
If the difference is statistically significant (p-value ≤ 0.05) then the
interval should not contain the postulated mean (as it is in our case).
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Notice that the obtained 95% confidence interval (473.8, 499.6) may
indicate that the true average volume of fluid in a bottle of beer could
be as high as 499.6 [mL] (so this would hardly make a practical
difference) or as low as 473.8 [mL] (a small, ~6%, but a practical
difference). In the case of our beer example it is just a curious fact, but
imagine you are testing a new drug lowering the ‘bad
cholesterol’ (LDL-C) level (the one that was mentioned in Section
4.9.5 ). Let’s say you got a 95% confidence interval for the reduction of
(-132, +2). The interval encompasses 0, so the true effect may be 0 and
you cannot reject 𝐻0 under those assumptions (p-value would be
greater than 0.05). However, the interval is broad, and its lower value
is −132, which means that the true reduction level after applying this
drug could be even −132 [mg/dL]. Based on the data from this table²⁰⁷ I

²⁰⁷https://en.wikipedia.org/wiki/Low-density_lipoprotein#Normal_ranges

guess this could have a big therapeutic meaning. So, you might want
to consider performing another experiment on the effects of the drug,
but this time you should take a bigger sample to dispel the doubt
(bigger sample size narrows the 95% confidence interval).

In general one sample t-test is used to check if a sample comes from a
population with the postulated mean (in our case in 𝐻0 the postulated
mean was 500 [mL]). However, I prefer to look at it from the different
perspective (the other end) hence my explanation above. The t-test is
named after William Sealy Gosset²⁰⁸ that published his papers under
the pen-name Student, hence it is also called a Student’s t-test.

²⁰⁸https://en.wikipedia.org/wiki/William_Sealy_Gosset

Checking the assumptions
Hopefully, the explanations above were clear enough. Still, we
shouldn’t just jump into performing a test blindly, first we should test
its assumptions (see figure below).
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Figure 15:  Figure 14: Checking assumptions of a statistical test before
running it.

First of all we start by choosing a test to perform. Usually it is a
parametric test²⁰⁹ , i.e. one that assumes some specific data distribution

²⁰⁹https://en.wikipedia.org/wiki/Parametric_statistics

(e.g. normal). Then we check our assumptions. If they hold we proceed
with our test. Otherwise we can either transform the data (e.g. take a
logarithm from each value) or choose a different test (the one that got
different assumptions or just less of them to fulfill). We will see an
example of a data transformation, and the possible benefits it can bring
us, later in this book (see the upcoming Section  7.8.1 ). Anyway, this
different test usually belongs to so called non-parametric tests²¹⁰ ,

²¹⁰https://en.wikipedia.org/wiki/Nonparametric_statistics

i.e. tests that make less assumptions about the data, but are likely to be
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slightly less powerful (you remember the power of a test from Section
4.7.5 , right?).

In our case a Student’s t-test requires (among others²¹¹ ) the data to be
normally distributed. This is usually verified with Shapiro-Wilk test²¹² 

²¹¹https://en.wikipedia.org/wiki/Student%27s_t-test#Assumptions
²¹²https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

or Kolmogorov-Smirnov test²¹³ . As an alternative to Student’s t-test

²¹³https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

(when the normality assumption does not hold) a Wilcoxon test²¹⁴ is

²¹⁴https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

often performed (of course before you use it you should check its
assumptions, see Figure  14 above).

Both Kolmogorov-Smirnov (see this docs²¹⁵ ) and Wilcoxon test (see
that docs²¹⁶ ) are at our disposal in HypothesisTests package. Behold

²¹⁵https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Kolmogorov-
Smirnov-test

²¹⁶https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-
signed-rank-test

Ht.ExactOneSampleKSTest(beerVolumes,
    Dsts.Normal(meanBeerVol, stdBeerVol))

Exact one sample Kolmogorov-Smirnov test
----------------------------------------
Population details:
    parameter of interest:   Supremum of CDF differences
    value under h_0:         0.0
    point estimate:          0.193372

Test summary:
    outcome with 95% confidence: fail to reject h_0
    two-sided p-value:           0.7826

Details:
    number of observations:   10

So it seems we got no grounds to reject the 𝐻0 that states that our
data are normally distributed (p-value > 0.05) and we were right to
perform our one-sample Student’s t-test. Of course, I had checked the
assumption before I conducted the test (Ht.OneSampleTTest). I didn’t
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mention it there because I didn’t want to prolong my explanation (and
diverge from the topic) back there.

And now a question. Is the boring assumption check before a
statistical test really necessary?

If you want your conclusions to reflect the reality well then yes. So,
even though a statistical textbook for brevity may not check the
assumptions of a method you should do it in your analyses if your care
about the correctness of your judgment.

Two samples Student’s t-test
Imagine a friend that studies biology told you that he had conducted a
research in order to write a dissertation and earn a master’s degree²¹⁷ .

²¹⁷https://en.wikipedia.org/wiki/Master_of_Science

As part of the research he tested a new drug (drug X) on mice. He
hopes the drug is capable to reduce the body weights of the animals
(and if so, then in a distant future it might be even tested on humans).
He asks you for help with the data analysis. The results obtained by
him are as follows.

import CSV as Csv
import DataFrames as Dfs

# if you are in 'code_snippets' folder, then use: "./ch05/miceBwt.csv"
# if you are in 'ch05' folder, then use: "./miceBwt.csv"
miceBwt = Csv.read("./code_snippets/ch05/miceBwt.csv", Dfs.DataFrame)
first(miceBwt, 3)

noDrugX drugX
26 26
26 25
24 25

Table 1: Table 1: Body mass [g] of mice (fictitious data).

Note: The path specification above should work fine on GNU/
Linux operating systems. I don’t know about other OSs.
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Here, we opened a table with a made up data for mice body weight [g]
(this data set can be found here²¹⁸ ). For that we used two new packages
( CSV²¹⁹ , and DataFrames²²⁰ ).

²¹⁸https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch05
²¹⁹https://csv.juliadata.org/stable/
²²⁰https://dataframes.juliadata.org/stable/

A *.csv file can be opened and created, e.g. with a spreadsheet²²¹ 
program. Here, we read it as a DataFrame, i.e. a structure that

²²¹https://en.wikipedia.org/wiki/List_of_spreadsheet_software

resembles an array from Section  3.3.7 . Since the DataFrame could
potentially have thousands of rows we displayed only the first three
(to check that everything succeeded) using the first function.

Note: We can check the size of a DataFrame with size function
which returns the information in a friendly (numRows, numCols)
format.

OK, let’s take a look at some descriptive statistics using describe²²² 
function.

²²²https://dataframes.juliadata.org/stable/lib/functions/#DataAPI.describe

Dfs.describe(miceBwt)

variable mean min median max nmissing eltype
noDrugX 25.5 23 25.5 29 0 Int64

drugX 24.1 21 24.5 26 0 Int64

Table 2: Table 2: Body mass of mice. Descriptive statistics.

It appears that mice from group drugX got somewhat lower body
weight. But that could be just a coincidence. Anyway, how should we
analyze this data? Well, it depends on the experiment design.

Since we have 10 rows (size(miceBwt)[1]). Then, either:

• we had 10 mice at the beginning. The mice were numbered
randomly 1:10 on their tails. Then we measured their initial weight
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(noDrugX), administered the drug and measured their body weight
after, e.g. one week (drugX), or

• we had 20 mice at the beginning. The mice were numbered
randomly 1:20 on their tails. Then first 10 of them (numbers 1:10)
became controls (regular food, group: noDrugX) and the other 10
(11:20) received additionally drugX (hence group drugX).

Interestingly, the experimental models deserve slightly different
statistical methodology. In the first case we will perform a paired
samples t-test, whereas in the other case we will use an unpaired
samples t-test. Ready, let’s go.

Paired samples Student’s t-test
Running a paired Student’s t-test with HypothesisTests package is
very simple. We just have to send the specific column(s) to the
appropriate function. Column selection can be done in one of the few
ways, e.g. miceBwt[:, "noDrugX"] (similarly to array indexing in
Section  3.3.7 : means all rows, note that this form copies the column),
miceBwt[!, "noDrugX"] (! instead of :, no copying),
miceBwt.noDrugX (again, no copying).

Note: Copying a column is advantageous when a function may
modify the input data, but it is less effective for big data frames. If
you wonder does a function changes its input then for starter
look at its name and compare it with the convention we discussed
in Section  3.4.4 . Still, to be sure you would have to examine the
function’s code.

And now we can finally run the paired t-test.

# miceBwt.noDrugX or miceBwt.noDrugX returns a column as a Vector
Ht.OneSampleTTest(miceBwt.noDrugX, miceBwt.drugX)

One sample t-test
-----------------
Population details:
    parameter of interest:   Mean
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    value under h_0:         0
    point estimate:          1.4
    95% confidence interval: (0.04271, 2.757)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           0.0445

Details:
    number of observations:   10
    t-statistic:              2.3333333333333335
    degrees of freedom:       9
    empirical standard error: 0.6

And voila. We got the result. It seems that drugX actually does lower
the body mass of the animals (𝑝 ≤ 0.05). But wait, didn’t we want to
do a (paired) two-samples t-test and not OneSampleTTest? Yes, we did.
Interestingly enough, a paired t-test is actually a one-sample t-test for
the difference. Observe.

# miceBwt.noDrugX or miceBwt.noDrugX returns a column as a Vector
# hence we can do element-wise subtraction using dot syntax
miceBwtDiff = miceBwt.noDrugX .- miceBwt.drugX
Ht.OneSampleTTest(miceBwtDiff)

One sample t-test
-----------------
Population details:
    parameter of interest:   Mean
    value under h_0:         0
    point estimate:          1.4
    95% confidence interval: (0.04271, 2.757)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           0.0445

Details:
    number of observations:   10
    t-statistic:              2.3333333333333335
    degrees of freedom:       9
    empirical standard error: 0.6

Here, we used the familiar dot syntax from Section  3.6.5 to obtain the
differences and then fed the result to OneSampleTTest from the
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previous section (see Section  5.2 ). The output is the same as in the
previous code snippet.

I don’t know about you, but when I was a student I often wondered
when to choose a paired and when an unpaired t-test. Now I finally
know, and it is so simple. Too bad that most statistical programs/
packages separate paired t-test from one-sample t-test (unlike the
authors of the HypothesisTests package).

Anyway, this also demonstrates an important feature of the data. The
data points in both columns/groups need to be properly ordered,
e.g. in our case it makes little sense to subtract body mass of a mouse
with 1 on its tail from a mouse with 5 on its tail, right? Doing so has
just as little sense as subtracting it from mouse number 6, 7, 8, etc.
There is only one clearly good way to do this subtraction and this is to
subtract mouse number 1 (drugX) from mouse number 1 (noDrugX). So,
if you ever wonder a paired or unpaired t-test then think if there is a
clearly better way to subtract one column of data from the other. If so,
then you should go with the paired t-test, otherwise choose the
unpaired t-test.

BTW, do you remember how in Section  5.2.2 we checked the
assumptions of our oneSampleTTest, well it turns out that here we
should do the same. However, this time instead of Kolmogorov-
Smirnov test I’m going to use Shapiro-Wilk’s normality test from
HypothesisTests package (generally Shapiro-Wilk is more powerful).

Ht.ShapiroWilkTest(miceBwtDiff)

Shapiro-Wilk normality test
---------------------------
Population details:
    parameter of interest:   Squared correlation of data and expected
order
                             statistics of N(0,1) (W)
    value under h_0:         1.0
    point estimate:          0.94181

Test summary:
    outcome with 95% confidence: fail to reject h_0
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    one-sided p-value:           0.5733

Details:
    number of observations: 10
    censored ratio:         0.0
    W-statistic:            0.94181

There, all normal (p > 0.05). So, we were right to perform the test. Still,
the order was incorrect, in general you should remember to check the
assumptions first and then proceed with the test. In case the normality
assumption did not hold we should consider doing a Wilcoxon test²²³ 

²²³https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

(non-parametric test), e.g. like so Ht.SignedRankTest(df.noDrugX,
df.drugX) or Ht.SignedRankTest(miceBwtDiff). More info on the
test can be found in the link above or on the pages of
HypothesisTests package (see here²²⁴ ).

²²⁴https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Wilcoxon-
signed-rank-test

Unpaired samples Student’s t-test
OK, now it’s time to move to the other experimental model. A
reminder, here we discuss the following situation:

• we had 20 mice at the beginning. The mice were numbered
randomly 1:20 on their tails. Then first 10 of them (numbers 1:10)
became controls (regular food, group: noDrugX) and the other 10
(11:20) received additionally drugX (hence group drugX).

Here we will compare mice noDrugX (miceID: 1:10) with mice drugX
(miceID: 11:20) using an unpaired samples t-test, but this time we will
start by checking the assumptions.

First the normality assumption.

function getSWtestPval(v::Vector{<:Real})::Float64
    return Ht.ShapiroWilkTest(v) |> Ht.pvalue
end

# for brevity we will extract just the p-values
(
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    getSWtestPval(miceBwt.noDrugX),
    getSWtestPval(miceBwt.drugX)
)

(0.6833331724399464, 0.3254417851120679)

OK, no reason to doubt the normality (p-vals > 0.05). The other
assumption that we may test is homogeneity of variance.
Homogeneity means that the spread of data around the mean in each
group is similar (var(gr1) ≈ var(gr2)). Here, we are going to use
Fligner-Killeen²²⁵ test from the HypothesisTests package.

²²⁵https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fligner-
Killeen-test

Ht.FlignerKilleenTest(miceBwt.noDrugX, miceBwt.drugX)

Fligner-Killeen test
--------------------
Population details:
    parameter of interest:   Variances
    value under h_0:         "all equal"
    point estimate:          NaN

Test summary:
    outcome with 95% confidence: fail to reject h_0
    p-value:                     1.0000

Details:
    number of observations: [10, 10]
    FK statistic:           4.76242e-31
    degrees of freedom:     1

Also this time, the assumption is fulfilled (p-value > 0.05), and now for
the unpaired test.

Ht.EqualVarianceTTest(
    miceBwt.noDrugX, miceBwt.drugX)

Two sample t-test (equal variance)
----------------------------------
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Population details:
    parameter of interest:   Mean difference
    value under h_0:         0
    point estimate:          1.4
    95% confidence interval: (-0.1877, 2.988)

Test summary:
    outcome with 95% confidence: fail to reject h_0
    two-sided p-value:           0.0804

Details:
    number of observations:   [10,10]
    t-statistic:              1.8525405838431677
    degrees of freedom:       18
    empirical standard error: 0.7557189365836423

It appears there is not enough evidence to reject the 𝐻0 (the mean
difference is equal to 0) on the cutoff level of 0.05. So, how could that
be, the means in both groups are still the same,
i.e. Stats.mean(miceBwt.noDrugX) = 25.5 and
Stats.mean(miceBwt.drugX) = 24.1, yet we got different results (reject
𝐻0 from paired t-test, not reject 𝐻0 from unpaired t-test). Well, it is
because we calculated slightly different things and because using
paired samples usually removes some between subjects variability.

In the case of unpaired t-test we:

1. assume that the difference between the means under 𝐻0 is equal to
0.

2. calculate the observed difference between the means,
Stats.mean(miceBwt.noDrugX) - Stats.mean(miceBwt.drugX) =
1.4.

3. calculate the sem (with a slightly different formula than for the one-
sample/paired t-test)

4. obtain the z-score (in case of t-test it is named t-score or t-statistics)
5. calculate the probability for the t-statistics (slightly different

calculation of the degrees of freedom)

When compared with the methodology for one-sample t-test from
Section  5.2 it differs only with respect to the points 3, 4 and 5 above.
Observe. First the functions
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function getSem(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    sem1::Float64 = getSem(v1)
    sem2::Float64 = getSem(v2)
    return sqrt((sem1^2) + (sem2^2))
end

function getDf(v1::Vector{<:Real}, v2::Vector{<:Real})::Int
    return getDf(v1) + getDf(v2)
end

There are different formulas for pooled sem (standard error of the
mean), but I only managed to remember this one because it reminded
me the famous Pythagorean theorem²²⁶ , i.e. 𝑐2 = 𝑎2 + 𝑏2, so 𝑐 =

²²⁶https://en.wikipedia.org/wiki/Pythagorean_theorem

√
𝑎2 + 𝑏2, that I learned in a primary school. As for the degrees of

freedom they are just the sum of the degrees of freedom for each of the
vectors. OK, so now the calculations

meanDiffBwtH0 = 0
meanDiffBwt = Stats.mean(miceBwt.noDrugX) - Stats.mean(miceBwt.drugX)
pooledSemBwt = getSem(miceBwt.noDrugX, miceBwt.drugX)
zScoreBwt = getZScore(meanDiffBwtH0, meanDiffBwt, pooledSemBwt)
dfBwt = getDf(miceBwt.noDrugX, miceBwt.drugX)
pValBwt = Dsts.cdf(Dsts.TDist(dfBwt), zScoreBwt) * 2

And finally the result that you may compare with the output of the
unpaired t-test above and the methodology for the one-sample t-test
from Section  5.2 .

(
    meanDiffBwtH0, # value under h_0
    round(meanDiffBwt, digits = 4), # point estimate
    round(pooledSemBwt, digits = 4), # empirical standard error
    # to get a positive zScore we should have calculated it as:
    # getZScore(meanDiffBwt, meanDiffBwtH0, pooledSemBwt)
    round(zScoreBwt, digits = 4), # t-statistic
    dfBwt, # degrees of freedom
    round(pValBwt, digits=4) # two-sided p-value
)

(0, 1.4, 0.7557, -1.8525, 18, 0.0804)
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Amazing. In the case of the unpaired two-sample t-test we use the
same methodology and reasoning as we did in the case of the one-
sample t-test from Section  5.2 (only functions for sem and df changed
slightly). Given the above I recommend you get back to the section
Section  5.2 and make sure you understand the explanations presented
there (if you haven’t done this already).

As an alternative to our unpaired t-test we should consider
Ht.UnequalVarianceTTest (if the variances are not equal) or
Ht.MannWhitneyUTest (if both the normality and homogeneity
assumptions do not hold).

One-way ANOVA
One-way ANOVA is a technique to compare two or more groups of
continuous data. It allows us to tell if all the groups are alike or not
based on the spread of the data around the mean(s).

Let’s start with something familiar. Do you still remember our tennis
players Peter and John from Section  4.7.1 . Well, guess what, they
work at two different biological institutes. The institutes independently
test a new weight reducing drug, called drug Y, that is believed to
reduce body weight of an animal by roughly 23%. The drug
administration is fairly simple. You just dilute it in water and leave it
in a cage for mice to drink it.

So both our friends independently run the following experiment: a
researcher takes eight mice, writes at random numbers at their tails
(1:8), and decides that the mice 1:4 will drink pure water, and the mice
5:8 will drink water with the drug. After a week body weights of all
mice are recorded.

As said, Peter and John run the experiments independently not
knowing one about the other. After a week Peter noticed that he
messed things up and did not give the drug to mice (when diluted the
drug is colorless and by accident he took the wrong bottle). It
happened, still let’s compare the results that were obtained by both
our friends.
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import Random as Rand

# Peter's mice, experiment 1 (ex1)
Rand.seed!(321)
ex1BwtsWater = Rand.rand(Dsts.Normal(25, 3), 4)
ex1BwtsPlacebo = Rand.rand(Dsts.Normal(25, 3), 4)

# John's mice, experiment 2 (ex2)
ex2BwtsWater = Rand.rand(Dsts.Normal(25, 3), 4)
ex2BwtsDrugY = Rand.rand(Dsts.Normal(25 * 0.77, 3), 4)

In Peter’s case both mice groups came from the same population
Dsts.Normal(25, 3) (𝜇 = 25, 𝜎 = 3) since they both ate and drunk
the same stuff. For need of different name the other group is named
placebo²²⁷ .

²²⁷https://en.wikipedia.org/wiki/Placebo

In John’s case the other group comes from a different distribution
(e.g. the one where body weight is reduced on average by 23%, hence 
𝜇 = 25*0.77).

Let’s see the results side by side on a graph.
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Figure 16:  Figure 15: The results of drug Y application on body
weights of laboratory mice.

I don’t know about you, but my first impression is that the data points
are more scattered around in John’s experiment. Let’s add some means
to the graph to make it more obvious.
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Figure 17:  Figure 16: The results of drug Y application on body
weights of laboratory mice (with group and overall means).

Indeed, with the lines (especially the overall means) the difference in
spread of the data points seems to be even more evident. Notice an
interesting fact, in the case of water and placebo the group means are
closer to each other, and to the overall mean. This makes sense, after
all the animals ate and drunk exactly the same stuff, so they belong to
the same population. On the other hand in the case of the two
populations (water and drugY) the group means differ from the overall
mean (again, think of it for a moment and convince yourself that it
makes sense). Since we got Julia on our side we could even try to
express this spread of data with numbers. First, the spread of data
points around the group means

function getAbsDiffs(v::Vector{<:Real})::Vector{<:Real}
    return abs.(Stats.mean(v) .- v)
end

function getAbsPointDiffsFromGroupMeans(
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    v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
    return vcat(getAbsDiffs(v1), getAbsDiffs(v2))
end

ex1withinGroupsSpread = getAbsPointDiffsFromGroupMeans(
    ex1BwtsWater, ex1BwtsPlacebo)
ex2withinGroupsSpread = getAbsPointDiffsFromGroupMeans(
    ex2BwtsWater, ex2BwtsDrugY)

ex1AvgWithinGroupsSpread = Stats.mean(ex1withinGroupsSpread)
ex2AvgWithingGroupsSpread = Stats.mean(ex2withinGroupsSpread)

(ex1AvgWithinGroupsSpread, ex2AvgWithingGroupsSpread)

(1.941755009754579, 2.87288915817597)

The code is pretty simple. Here we calculate the distance of data points
around the group means. Since we are not interested in a sign of a
difference [+ (above), - (below) the mean] we use abs function. We
used a similar methodology when we calculated absDiffsStudA and
absDiffsStudB in Section  4.6 . This is as if we measured the distances
from the group means in Figure  16 with a ruler and took the average
of them. The only new part is the vcat²²⁸ function. All it does is it glues

²²⁸https://docs.julialang.org/en/v1/base/arrays/#Base.vcat

two vectors together, like: vcat([1, 2], [3, 4]) gives us [1, 2, 3,
4]. Anyway, the average distance of a point from a group mean is 1.9
[g] for experiment 1 (left panel in Figure  16 ). For experiment 2 (right
panel in Figure  16 ) it is equal to 2.9 [g]. That is nice, as it follows our
expectations. However, AvgWithinGroupsSpread by itself is not
enough since sooner or later in experiment 1 (hence prefix ex1-) we
may encounter (a) population(s) with a wide natural spread of the
data. Therefore, we need a more robust metric.

This is were the average spread of group means around the overall
mean could be useful. Let’s get to it, we will start with these functions

function repVectElts(v::Vector{T}, times::Vector{Int})::Vector{T} where
T
    @assert (length(v) == length(times)) "length(v) not equal
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length(times)"
    @assert all(map(x -> x > 0, times)) "times elts must be positive"
    result::Vector{T} = Vector{eltype(v)}(undef, sum(times))
    currInd::Int = 1
    for i in eachindex(v)
        for _ in 1:times[i]
            result[currInd] = v[i]
            currInd += 1
        end
    end
    return result
end

function getAbsGroupDiffsFromOverallMean(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
    overallMean::Float64 = Stats.mean(vcat(v1, v2))
    groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
    absGroupDiffs::Vector{<:Real} = abs.(overallMean .- groupMeans)
    absGroupDiffs = repVectElts(absGroupDiffs, map(length, [v1, v2]))
    return absGroupDiffs
end

The function repVectElts is a helper function. It is slightly
complicated and I will not explain it in detail. Just treat it as any other
function from a library. A function you know only by name, input, and
output. A function that you are not aware of its insides (of course if
you really want you can figure them out by yourself). All it does is it
takes two vectors v and times, then it replicates each element of v a
number of times specified in times like so: repVectElts([10, 20],
[1, 2]) output [10, 20, 20]. And this is actually all you care about
right now.

As for the getAbsGroupDiffsFromOverallMean it does exactly what it
says. It subtracts group means from the overall mean
(overallMean .- groupMeans) and takes absolute values of that
[abs.(]. Then it repeats each difference as many times as there are
observations in the group repVectElts(absGroupDiffs, map(length,
[v1, v2])) (as if every single point in a group was that far away from
the overall mean). This is what it returns to us.

OK, time to use the last function, behold
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ex1groupSpreadFromOverallMean = getAbsGroupDiffsFromOverallMean(
    ex1BwtsWater, ex1BwtsPlacebo)
ex2groupSpreadFromOverallMean = getAbsGroupDiffsFromOverallMean(
    ex2BwtsWater, ex2BwtsDrugY)

ex1AvgGroupSpreadFromOverallMean =
Stats.mean(ex1groupSpreadFromOverallMean)
ex2AvgGroupSpreadFromOverallMean =
Stats.mean(ex2groupSpreadFromOverallMean)

(ex1AvgGroupSpreadFromOverallMean, ex2AvgGroupSpreadFromOverallMean)

(0.597596847858199, 3.6750594521844278)

OK, we got it. The average group mean spread around the overall
mean is 0.6 [g] for experiment 1 (left panel in Figure  16 ) and 3.7 [g]
for experiment 2 (right panel in Figure  16 ). Again, the values are as
we expected them to be based on our intuition.

Now, we can use the obtained before AvgWithinGroupSpread as a
reference point for AvgGroupSpreadFromOverallMean like so

LStatisticEx1 = ex1AvgGroupSpreadFromOverallMean /
ex1AvgWithinGroupsSpread
LStatisticEx2 = ex2AvgGroupSpreadFromOverallMean /
ex2AvgWithingGroupsSpread

(LStatisticEx1, LStatisticEx2)

(0.3077611979143188, 1.2792207599536367)

Here, we calculated a so called L-Statistic (LStatistic). I made the
name up, because that is the first name that came to my mind. Perhaps
it is because my family name is Lukaszuk or maybe because I’m
selfish. Anyway, the higher the L-statistic (so the ratio of group spread
around the overall mean to within group spread) the smaller the
probability that such a big difference was caused by a chance alone
(hmm, I think I said something along those lines in one of the previous
chapters). If only we could reliably determine the cutoff point for my
LStatistic (we will try to do so in Section  5.8.2 ).
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Luckily, there is no point for us to do that since one-way ANOVA
relies on a similar metric called F-statistic (BTW. Did I mention that
the ANOVA was developed by Ronald Fisher²²⁹ ? Of course, in that case
others bestowed the name in his honor). Observe. First, experiment 1:

²²⁹https://en.wikipedia.org/wiki/Ronald_Fisher

Ht.OneWayANOVATest(ex1BwtsWater, ex1BwtsPlacebo)

One-way analysis of variance (ANOVA) test
-----------------------------------------
Population details:
    parameter of interest:   Means
    value under h_0:         "all equal"
    point estimate:          NaN

Test summary:
    outcome with 95% confidence: fail to reject h_0
    p-value:                     0.5738

Details:
    number of observations: [4, 4]
    F statistic:            0.353601
    degrees of freedom:     (1, 6)

Here, my made up LStatistic was 0.31 whereas the F-Statistic is 0.35,
so kind of close. Chances are they measure the same thing but using
slightly different methodology. Here, the p-value (p > 0.05)
demonstrates that the groups may come from the same population (or
at least that we do not have enough evidence to claim otherwise).

OK, now time for experiment 2:

Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY)

One-way analysis of variance (ANOVA) test
-----------------------------------------
Population details:
    parameter of interest:   Means
    value under h_0:         "all equal"
    point estimate:          NaN

Test summary:
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    outcome with 95% confidence: reject h_0
    p-value:                     0.0428

Details:
    number of observations: [4, 4]
    F statistic:            6.56001
    degrees of freedom:     (1, 6)

Here, the p-value (𝑝 ≤ 0.05) demonstrates that the groups come from
different populations (the means of those populations differ). As a
reminder, in this case my made up L-Statistic (LStatisticEx2) was
1.28 whereas the F-Statistic is 6.56, so this time it is more distant. The
differences stem from different methodology. For instance, just like in
Section  4.6 here (LStatisticEx2) we used abs function as our power
horse. But do you remember, that statisticians love to get rid of the
sign from a number by squaring it. Anyway, let’s rewrite our functions
in a more statistical manner.

# compare with our getAbsDiffs
function getSquaredDiffs(v::Vector{<:Real})::Vector{<:Real}
    return (Stats.mean(v) .- v) .^ 2
end

# compare with our getAbsPointDiffsFromOverallMean
function getResidualSquaredDiffs(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
    return vcat(getSquaredDiffs(v1), getSquaredDiffs(v2))
end

# compare with our getAbsGroupDiffsAroundOverallMean
function getGroupSquaredDiffs(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Vector{<:Real}
    overallMean::Float64 = Stats.mean(vcat(v1, v2))
    groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
    groupSqDiffs::Vector{<:Real} = (overallMean .- groupMeans) .^ 2
    groupSqDiffs = repVectElts(groupSqDiffs, map(length, [v1, v2]))
    return groupSqDiffs
end

Note: In reality functions in statistical packages probably use a
different formula for getGroupSquaredDiffs (they do not

162



replicate groupSqDiffs). Still, I like my explanation better, so I
will leave it as it is.

The functions are very similar to the ones we developed earlier. Of
course, instead of abs.( we used .^2 to get rid of the sign. Here, I
adopted the names (group sum of squares and residual sum of
squares) that you may find in a statistical textbook/software.

Now we can finally calculate averages of those squares and the F-
statistics itself with the following functions

function getResidualMeanSquare(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    residualSquaredDiffs::Vector{<:Real} = getResidualSquaredDiffs(v1,
v2)
    return sum(residualSquaredDiffs) / getDf(v1, v2)
end

function getGroupMeanSquare(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    groupSquaredDiffs::Vector{<:Real} = getGroupSquaredDiffs(v1, v2)
    groupMeans::Vector{Float64} = [Stats.mean(v1), Stats.mean(v2)]
    return sum(groupSquaredDiffs) / getDf(groupMeans)
end

function getFStatistic(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    return getGroupMeanSquare(v1, v2) / getResidualMeanSquare(v1, v2)
end

Again, here I tried to adopt the names (group mean square and
residual mean square) that you may find in a statistical textbook/
software. Anyway, notice that in order to calculate MeanSquares we
divided our sum of squares by the degrees of freedom (we met this
concept and developed the functions for its calculation in Section  5.2
and in Section  5.3.2 ). Using degrees of freedom (instead of
length(vector) like in the arithmetic mean) is usually said to provide
better estimates of the desired values when the sample size(s) is/are
small.

OK, time to verify our functions for the F-statistic calculation.
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(
    getFStatistic(ex1BwtsWater, ex1BwtsPlacebo),
    getFStatistic(ex2BwtsWater, ex2BwtsDrugY),
)

(0.3536010850042917, 6.560010563323356)

To me, they look similar to the ones produced by Ht.OneWayANOVATest
before, but go ahead scroll up and check it yourself. Anyway, under 
𝐻0 (all groups come from the same population) the F-statistic (so 
𝑔𝑟𝑜𝑢𝑝𝑀𝑒𝑎𝑛𝑆𝑞
𝑟𝑒𝑠𝑖𝑑𝑀𝑒𝑎𝑛𝑆𝑞 ) got the F-Distribution²³⁰ (a probability distribution),

²³⁰https://en.wikipedia.org/wiki/F-distribution

hence we can calculate the probability of obtaining such a value (or
greater) by chance and get our p-value (similarly as we did in Section
4.6.2 or in Section  5.2 ). Based on that we can deduce whether samples
come from the same population (p > 0.05) or from different
populations (𝑝 ≤ 0.05). Ergo, we get to know if any group (means)
differ(s) from the other(s).

Post-hoc tests
Let’s start with a similar example to the ones we already met.

Imagine that you are a scientist and in the Amazon rain forest you
discovered two new species of mice (spB, and spC). Now, you want to
compare their body masses with an ordinary lab mice (spA) so you
collect the data. If the body masses differ perhaps in the future they
will become the criteria for species recognition.

# if you are in 'code_snippets' folder, then use: "./ch05/
miceBwtABC.csv"
# if you are in 'ch05' folder, then use: "./miceBwtABC.csv"
miceBwtABC = Csv.read("./code_snippets/ch05/miceBwtABC.csv",
Dfs.DataFrame)
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spA spB spC
18 21 23
21 25 27
20 26 25
23 24 28
22 21 27
19 24 26

Table 3: Table 3: Body mass [g] of three mice species (fictitious data).

Now, let us quickly look at the means and standard deviations in the
three groups to get some impression about the data.

[
(n, Stats.mean(miceBwtABC[!, n]), Stats.std(miceBwtABC[!, n]))
    for n in Dfs.names(miceBwtABC) # n stands for name
]

("spA", 20.5, 1.8708286933869707)

("spB", 23.5, 2.073644135332772)

("spC", 26.0, 1.7888543819998317)

Here, the function Dfs.names returns Vector{T} with names of the
columns. In connection with comprehensions we met in Section  3.6.3
it allows us to quickly obtain the desired statistics without typing the
names by hand. Alternatively we would have to type

[
("spA", Stats.mean(miceBwtABC[!, "spA"]), Stats.std(miceBwtABC[!,
"spA"])),
("spB", Stats.mean(miceBwtABC[!, "spB"]), Stats.std(miceBwtABC[!,
"spB"])),
("spC", Stats.mean(miceBwtABC[!, "spC"]), Stats.std(miceBwtABC[!,
"spC"])),
]

165



It didn’t save us a lot of typing in this case, but think what if we had
10, 30 or even 100 columns. The gain would be quite substantial.

Alternatively, if you read the documentation of the before mentioned
(Section  5.3 ) Dfs.describe then you can go with:

Dfs.describe(miceBwtABC, :mean, :std)

variable mean std
spA 20.5 1.8708286933869707
spB 23.5 2.073644135332772
spC 26.0 1.7888543819998317

Table 4: Table 4: Selected summary statistics based on miceBwtABC
data frame.

Anyway, based on the means it appears that the three species differ
slightly in their body masses. Still, in connection with the standard
deviations, we can see that the body masses in the groups overlap
slightly. So, is it enough to claim that they are statistically different at
the cutoff level of 0.05 (𝛼)? Let’s test that with the one-way ANOVA
that we met in the previous chapter.

Let’s start by checking the assumptions. First, the normality
assumption

[getSWtestPval(miceBwtABC[!, n]) for n in Dfs.names(miceBwtABC)] |>
pvals -> map(pv -> pv > 0.05, pvals) |>
         all

true

All normal. Here we get the p-values from Shapiro-Wilk test for all our
groups. Briefly, we obtain p-value (getSWtestPval) for each group
(Dfs.names(miceBwtABC)). Then we pipe (compare with |> in
getSortedKeysVals from Section  4.5 ) the result to map to check if the
p-values (pvals) are greater than 0.05 (then we do not reject the null
hypothesis of normal distribution). Finally, we pipe (|>) the
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Vector{Bool} to the function all²³¹ . The function returns true only if
all the elements of the vector are true.

²³¹https://docs.julialang.org/en/v1/base/collections/#Base.all-Tuple%7BAny%7D

OK, time for the homogeneity of variance assumption

Ht.FlignerKilleenTest(
    [miceBwtABC[!, n] for n in Dfs.names(miceBwtABC)]...
    ) |> Ht.pvalue |> pv -> pv > 0.05

true

The variances are roughly equal. Here [miceBwtABC[!, n] for n in
Dfs.names(miceBwtABC)] returns Vector{Vector{<:Real}} so vector
of vectors, e.g. [[1, 2], [3, 4], [5, 6]] but Ht.FlingerTest
expects separate vectors [1, 2], [3, 4], [5, 6] (no outer square
brackets). The splat operator (...) placed after the array removes the
outer square brackets. Then we pipe the result of the test
Ht.FlingerTest to Ht.pvalue because according to the
documentation²³² it extracts the p-value from the result of the test.

²³²https://juliastats.org/HypothesisTests.jl/stable/

Finally, we pipe (|>) the result to an anonymous function (pv -> pv >
0.05) to check if the p-value is greater than 0.05 (then we do not reject
the null hypothesis of variance homogeneity).

OK, and now for the one-way ANOVA.

Ht.OneWayANOVATest(
    [miceBwtABC[!, n] for n in Dfs.names(miceBwtABC)]...
    ) |> Ht.pvalue

0.0006608056579183923

Hmm, OK, the p-value is lower than the cutoff level of 0.05. What now.
Well, by doing one-way ANOVA you ask your computer a very
specific question: “Does at least one of the group means differs from
the other(s)?”. The computer does exactly what you tell it, nothing
more, nothing less. Here, it answers your question precisely with:
“Yes” (since 𝑝 ≤ 0.05). I assume that right now you are not satisfied
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with the answer. After all, what good is it if you still don’t know which
group(s) differ one from another: spA vs. spB and/or spA vs spC and/or
spB vs spC. If you want your computer to tell you that then you must
ask it directly to do so. That is what post-hoc tests are for (post hoc
means after the event, here the event is one-way ANOVA).

The split to one-way ANOVA and post-hoc tests made perfect sense in
the 1920s-30s and the decades after the method was introduced. Back
then you performed calculations with a pen and a piece of paper (and
since ~1970s a pocket calculator as well). Once one-way ANOVA
produced a p-value greater than 0.05 you stopped (and saved time and
energy on an unnecessary additional calculations). Otherwise, and
only then, you performed a post-hoc test (again with a pen and a piece
of paper). Anyway, as mentioned in Section  4.9.4 the popular choices
for post-hoc tests include Fisher’s LSD test and Tukey’s HSD test. Here
we are going to use a more universal approach and apply a so called
pairwise t-test (which is just a t-test, that you already know, done
between every pairs of groups). Ready, here we go

evtt = Ht.EqualVarianceTTest
getPval = Ht.pvalue

# for "spA vs spB", "spA vs spC" and "spB vs spC", respectively
postHocPvals = [
evtt(miceBwtABC[!, "spA"], miceBwtABC[!, "spB"]) |> getPval,
evtt(miceBwtABC[!, "spA"], miceBwtABC[!, "spC"]) |> getPval,
evtt(miceBwtABC[!, "spB"], miceBwtABC[!, "spC"]) |> getPval,
]

postHocPvals

[0.025111501405268754, 0.0003985445257645916, 0.049332195639921715]

OK, here to save us some typing we assigned the long function names
(Ht.EqualVarianceTTest and Ht.pvalue) to the shorter ones (evtt
and getPval). Then we used them to conduct the t-tests and extract
the p-values for all the possible pairs to compare (we will develop
some more user friendly functions in the upcoming exercises, see
Section  5.7.4 ). Anyway, it appears that here any mouse species differs
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with respect to their average body weight from the other two species
(all p-vaues are below 0.05). Or does it?

Multiplicity correction
In the previous section we performed a pairwise t-test for the
following comparisons:

• spA vs spB,
• spA vs spC,
• spB vs spC.

The obtained p-values were

postHocPvals

[0.025111501405268754, 0.0003985445257645916, 0.049332195639921715]

Based on that we concluded that every group mean differs from every
other group mean (all p-values are lower than the cutoff level for 𝛼
equal to 0.05). However, there is a small problem with this approach
(see the explanation below).

In Section  4.7.5 we said that it is impossible to reduce the type 1 error
(𝛼) probability to 0. Therefore if all our null hypothesis (𝐻0) were true
we need to accept the fact that we will report some false positive
findings. All we can do is to keep that number low.

Imagine you are testing a set of random substances to see if they
reduce the size (e.g. diameter) of a tumor²³³ . Most likely the vast

²³³https://en.wikipedia.org/wiki/Neoplasm

majority of the tested substances will not work (so let’s assume that in
reality all 𝐻0s are true). Now imagine, that the result each substance
has on the tumor is placed in a separate graph. So, you draw a
boxplot²³⁴ (like the one you will do in the upcoming Section  5.7.5 ).

²³⁴https://en.wikipedia.org/wiki/Box_plot

Now the question. How many graphs would contain false positive
results if the cutoff level for 𝛼 is 0.05? Pause for a moment and come
up with the number. That is easy, 100 graphs times 0.05 (probability of
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false positive) gives us the expected 100 * 0.05 = 5 figures with false
positives. BTW. If you got it, congratulations. If not compare the
solution with the calculations we did in Section  4.5 . Anyway, you
decided that this will be your golden standard, i.e. no more than 5%
( 5100  = 0.05) of figures with false positives.

But here (in postHocPvals above) you got 3 comparisons and therefore
3 p-values. Imagine that you place such three results into a single
figure. Now, the question is: under the conditions given above (all 𝐻0s
true, cutoff for 𝛼 = 0.05) how many graphs would contain false
positives if you placed three such comparisons per graph for 100
figures? Think for a moment and come up with the number.

OK, so we got 100 graphs, each reporting 3 comparisons (3 p-values),
which gives us in total 300 results. Out of them we expect 300 * 0.05
= 15 to be false positives. Now, we pack those 300 results into 100
figures. In the best case scenario the 15 false positives will land in the
first five graphs (three false positives per graph, 5*3 = 15), the
remaining 285 true negatives will land in the remaining 95 figures
(three true negatives per graph, 95*3 = 285). The golden standard
seems to be kept (5/100 = 0.05). The problem is that we don’t know
which figures get the false positives. The Murphy’s law²³⁵ states:

²³⁵https://en.wikipedia.org/wiki/Murphy%27s_law

“Anything that can go wrong will go wrong, and at the worst possible
time.” (or in the worst possible way). If so, then the 15 false positives
will go to 15 different figures (1 false positive + 2 true negatives per
graph), and the remaining 285 - 2*15 = 255 true negatives will go to
the remaining 255/3 = 85 figures. Here, your golden standard (5% of
figures with false positives) is violated (15/100 = 0.15).

This is why we cannot just leave the three postHocPvals as they are.
We need to act, but what can we do to counteract the problem. Well, if
the initial cutoff level for 𝛼 was 3 times smaller (0.05/3 = 0.017) then
in the case above we would have 300 * (0.05/3) ≈ 5.0 false positives
to put into 100 figures and everything would be OK even in the worst
case scenario. Alternatively, since division is inverse operation to
multiplication we could just multiply every p-value by 3 (number of

170



comparisons) and check its significance at the cutoff level for 𝛼 = 0.05,
like so

function adjustPvalue(pVal::Float64, by::Int)::Float64
    @assert (0 <= pVal <= 1) "pVal must be in range [0-1]"
    return min(1, pVal*by)
end

function adjustPvalues(pVals::Vector{Float64})::Vector{Float64}
    return adjustPvalue.(pVals, length(pVals))
end

# p-values for comparisons: spA vs spB, spA vs spC, and spB vs spC
adjustPvalues(postHocPvals)

[0.07533450421580626, 0.0011956335772937748, 0.14799658691976514]

Notice, the since on entry a p-value may be, let’s say, 0.6 then
multiplying it by 3 would give us 1.8 which is an impossible value for
probability (see Section  4.3.1 ). That is why we set the upper limit to 1
by using min(1, pVal*by). Anyway, after adjusting for multiple
comparisons only one species differs from the other (spA vs spC,
adjusted 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05). And this is our final conclusion.

The method we used above (in adjustPvalue and adjustPvalues) is
called the Bonferroni correction²³⁶ . Probably it is the simplest method

²³⁶https://en.wikipedia.org/wiki/Bonferroni_correction

out there and it is useful if we have a small number of independent
comparisons/p-values (let’s say up to 6). For a large number of
comparisons you are likely to end up with a paradox:

• one-way ANOVA (which controls the overall 𝛼 at the level of 0.05)
indicates that there are some statistically significant differences,

• the corrected p-values (which rely on different assumptions) show
no significant differences.

Therefore, for large number of comparisons you may choose a
different (less strict) method, e.g. the Benjamini-Hochberg
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procedure²³⁷ . Both of those (Bonferroni and Benjamini-Hochberg) are
available in the MultipleTesting²³⁸ package. Observe

²³⁷https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93
Hochberg_procedure

²³⁸https://github.com/juliangehring/MultipleTesting.jl

import MultipleTesting as Mt
# p-values for comparisons: spA vs spB, spA vs spC, and spB vs spC
resultsOfThreeAdjMethods = (
    adjustPvalues(postHocPvals),
    Mt.adjust(postHocPvals, Mt.Bonferroni()),
    Mt.adjust(postHocPvals, Mt.BenjaminiHochberg())
)

resultsOfThreeAdjMethods

([0.07533450421580626, 0.0011956335772937748, 0.14799658691976514],
 [0.07533450421580626, 0.0011956335772937748, 0.14799658691976514],
 [0.03766725210790313, 0.0011956335772937748, 0.049332195639921715])

As expected, the first two lines give the same results (since they both
use the same adjustment method). The third line, and a different
method, produces a different result (and hence yields distinctive
interpretation).

A word of caution, you shouldn’t just apply 10 different adjustment
methods on the obtained p-values and choose the one that produces
the greatest number of significant differences. Instead you should
choose a correction method a priori (up front, in advance) and stick to
it later (make the final decision of which group(s) differ based on the
adjusted p-values). Therefore, it takes some consideration to choose
the multiplicity correction well.

OK, enough of theory, time for some practice. Whenever you’re ready
click the right arrow to go to the exercises for this chapter.

Exercises - Comparisons of Continuous Data
Just like in the previous chapters here you will find some exercises that
you may want to solve to get from this chapter as much as you can
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(best option). Alternatively, you may read the task descriptions and the
solutions (and try to understand them).

Exercise 1
In Section  5.2 we said that when we draw a small random sample
from a normal distribution of a given mean (𝜇) and standard deviation
(𝜎) then the distribution of the sample means will be pseudo-normal
with the mean roughly equal to the population mean and the standard
deviation roughly equal to sem (standard error of the mean).

Time to confirm that. Moreover, it’s time to practice our plotting skills
(I think we neglected them so far).

In this task your population of interest is Dsts.Normal(80, 20). To
make it more concrete let’s say this is the distribution of body weight
for adult humans. To plot you may use CairoMakie²³⁹ or some other
plotting library (read the tutorial(s)/docs first).

²³⁹https://docs.makie.org/stable/documentation/backends/cairomakie/

1) draw a random sample of size 10 from the population
Dsts.Normal(80, 20). Calculate sem and sd for the sample,

2) draw 100’000 random samples of size 10 from the population
Dsts.Normal(80, 200) and calculate the samples means (100’000
sample means)

3) draw the histogram of the sample means from point 2 using, e.g.
Cmk.hist²⁴⁰ . Afterwards, you may set the y-axis limits from 0 to
4000, with Cmk.ylims!(0, 4000).

4) on the histogram mark the population mean (𝜇 = 80) with a
vertical line using, e.g.  Cmk.vlines²⁴¹

5) annotate the line from point 4 (e.g. type “population mean = 80”)
using, e.g.  Cmk.text²⁴²

6) on the histogram mark the means standard deviation using, e.g.
Cmk.bracket²⁴³ ,

7) annotate the histogram (above the bracket from point 6) with the
means standard deviation, using, e.g.  Cmk.text²⁴⁴ ,

8) annotate the histogram with the sample’s sem and sd (from point 1)
and compare them with the means standard deviation from point 7.
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²⁴⁰https://docs.makie.org/stable/examples/plotting_functions/hist/index.html#
hist

²⁴¹https://docs.makie.org/stable/examples/plotting_functions/hvlines/index.html#
vlines

²⁴²https://docs.makie.org/stable/examples/plotting_functions/text/index.html#
text

²⁴³https://docs.makie.org/stable/examples/plotting_functions/bracket/
²⁴⁴https://docs.makie.org/stable/examples/plotting_functions/text/index.html#

text

And that’s it. This may look like a lot of work to do, but don’t freak
out, do it one point at a time, look at the instructions (they are pretty
precise on purpose).

Remember that each of those functions may have an equivalent that ends
with ! (a function that modifies an already existing figure). It is for you
to decide when to use which version of a plotting function.

Exercise 2
Do you remember how in Section  5.4 we calculated the L-statistic for
ex2BwtsWater and ex2BwtsDrugY and found out its value was equal to
LStatisticEx2 = 1.28? Then we calculated the famous F-statistic for
the same two groups (ex2BwtsWater and ex2BwtsDrugY) and it was
equal to getFStatistic(ex2BwtsWater, ex2BwtsDrugY) = 6.56. The
probability of obtaining an F-value greater than this (by chance) if 𝐻0
is true (i.e. both groups come from the same distribution
(Dsts.Normal(25, 3)) is equal to:

# the way we calculated it in the chapter (more or less)
Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY) |> Ht.pvalue

0.04283642629899474

Alternatively, we cold calculate it also with our friendly
Distributions package (similarly to how we used it in, e.g. Section
4.6.2 )

# the way we can calculate it with Distributions package
# 1 - Dfs for groups (number of groups - 1),
# 6 - Dfs for residuals (number of observations - number of groups)
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1 - Dsts.cdf(Dsts.FDist(1, 6), getFStatistic(ex2BwtsWater,
ex2BwtsDrugY))

0.042836426298994756

Hopefully, you remember that. OK, here is the task.

1) write a function getLStatistic(v1::Vector{<:Real},
v2::Vector{<:Real})::Float64 that calculates the L-Statistic for
two given vectors

2) estimate the L-Distribution. To do that:

2.1) run, let’s say 1’000’000 simulations under 𝐻0 that v1 and v2
come from the same population (Dsts.Normal(25, 3), draw 4
observations per vector). Calculate the L-Statistic each time (round
it to 1 decimal place with round(getLStatistic(v1, v2),
digits=1)

2.2) use getCounts (Section  4.4 ), getProbs (Section  4.4 ) and
getSortedKeysVals (Section  4.5 ) to obtain the probabilities for
each value of the L-Statistic produced in point 2.1

2.3) based on the data from point 2.2 calculate the probability of L-
Statistic being greater than LStatisticEx2 = 1.28. Compare the
probability with the probability obtained for the F-Statistic
(presented in the code snippets above)

3) using, e.g.  Cmk.lines²⁴⁵ (color="blue") and the data from point 2.2
plot the probability distribution for the L-Distribution

4) add vertical line, e.g with Cmk.vlines at L-Statistic = 1.28, annotate
the line with Cmk.text

5) check what happens if both the samples from point 2.1 come from a
different population (e.g. Dsts.Normal(100, 50)). Plot the new
distribution on the old one (point 3) with, e.g.  Cmk.scatter²⁴⁶ 
(marker=:circle, color="blue").

6) check what happens if the samples from point 2.1 come from the
same distribution (Dsts.Normal(25, 3)) but are of different size (8
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observations per vector). Plot the new distribution on the old one
(point 3) with, e.g. Cmk.scatter (marker=:xcross, color="blue").

²⁴⁵https://docs.makie.org/stable/examples/plotting_functions/lines/index.html#
lines

²⁴⁶https://docs.makie.org/stable/examples/plotting_functions/scatter/index.html#
scatter

Optionally, if you want to make your plots more readable and if you like
challenges you may:

7) add the F-Distribution to the plot, e.g. with Cmk.lines
(color="red")

8) add legends²⁴⁷ to the plots

²⁴⁷https://docs.makie.org/stable/examples/blocks/legend/index.html#multi-
group_legends

Again. This may look like a lot of work to do, but don’t freak out, do it
one point at a time, look at the instructions (they are pretty precise on
purpose). If you get stuck, take a sneak peak at the solution and
continue on your own once you get back on the track.

Exercise 3
Let’s cool down after the last two demanding exercises.

In this task I want you to write the function
getPValUnpairedTest(v1::Vector{<:Real},
v2::Vector{<:Real})::Float64. The function accepts two vectors,
runs an unpaired test and returns the p-value.

The function should check the:

1) normality (Ht.ShapiroWilkTest), and
2) homogeneity of variance (Ht.FlingerTest)

assumptions.

If both the assumptions hold then run Ht.EqualVarianceTTest.

If only normality assumption holds then run
Ht.UnequalVarianceTTest.

Otherwise run Ht.MannWhitneyUTest.
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Exercise 4
Write a function with the following signature:

function getPValsUnpairedTests(
    df::Dfs.DataFrame
    )::Dict{Tuple{String,String},Float64}

The function accepts a data frame (like miceBwtABC we met in Section
5.5 ). Then it runs the appropriate comparisons (use
getPValUnpairedTest that you developed in Section  5.7.3 ) and
returns the p-values for comparisons in the form of a dictionary where
the keys are the names of the compared groups (Tuple{String,
String}), and the values are pvalues (e.g. Dict(("grX", "grY") =>
0.3, ("grX", "grZ") => 0.022). The function should compare every
group with every other group.

Once you are done with this task tweak your function slightly to have
the following signature:

function getPValsUnpairedTests(
    df::Dfs.DataFrame,
    multCorr
    )::Dict{Tuple{String,String},Float64}

This function adjusts the obtained p-values using some sort of
multiplicity correction (multCorr) from MultipleTesting package we
discussed before (Section  5.6 ). I didn’t write the type signature for
multCorr here because it might be frightening at first sight. Still, even
without it the function should work just fine.

Test your function on miceBwtABC and compare the results with those
we obtained in Section  5.5 and in Section  5.6 .

Exercise 5
It appears that when a scientific paper presents a comparison between
few groups of continuous variables it does so in a form of bar-plot or
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box-plot²⁴⁸ with some markers for statistically significant differences
over the bars/boxes.

²⁴⁸https://en.wikipedia.org/wiki/Box_plot

So here is your task. For data from miceBwtABC from Section  5.5 write
a function that draws a plot similar to the one below (it doesn’t have to
be the exact copy).

Figure 18:  Figure 17: Boxplot of body mass of three mice species
(fictitious data). a - difference vs. spA (p < 0.05), b - difference vs. spB

(p < 0.05).

In the graph a middle horizontal line in a box is the median²⁴⁹ , a box
depicts interquartile range²⁵⁰ (IQR), the whiskers length is equal to 1.5 *
IQR (or the maximum and minimum if they are smaller than 1.5 * IQR).

²⁴⁹https://en.wikipedia.org/wiki/Median
²⁵⁰https://en.wikipedia.org/wiki/Interquartile_range

For the task you may use:

• Cmk.boxplot²⁵¹ - to draw the boxplot

178



• Cmk.xticks²⁵² - to add group labels in x-ticks
• p-values provided by getPValsUnpairedTests(miceBwtABC,
Mt.BenjaminiHochberg) from the last exercise to generate statistical
significance markers.

• Cmk.text²⁵³ to place the markers in the correct positions on the plot.

²⁵¹https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.
html#boxplot

²⁵²https://docs.makie.org/stable/examples/blocks/axis/index.html#xticks
²⁵³https://docs.makie.org/stable/examples/plotting_functions/text/index.html#

text

The function should also work for different data frames of similar kind
with different number of groups in the columns.

Solutions - Comparisons of Continuous Data
In this sub-chapter you will find exemplary solutions to the exercises
from the previous section.

Solution to Exercise 1
First the sample and the 100’000 simulations:

Rand.seed!(321)
ex1sample = Rand.rand(Dsts.Normal(80, 20), 10)
ex1sampleSd = Stats.std(ex1sample)
ex1sampleSem = getSem(ex1sample)
ex1sampleMeans = [
    Stats.mean(Rand.rand(Dsts.Normal(80, 20), 10))
    for _ in 1:100_000]
ex1sampleMeansMean = Stats.mean(ex1sampleMeans)
ex1sampleMeansSd = Stats.std(ex1sampleMeans)

The code doesn’t contain any new elements, so I will leave it to you to
figure out what happened there.

And now, let’s move to the plot.

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="Histogram of 100'000 sample means",
               xlabel="Adult human body weight [kg]",
               ylabel="Count")
Cmk.hist!(ax1, ex1sampleMeans, bins=100,
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          color=Cmk.RGBAf(0, 0, 1, 0.3))
Cmk.ylims!(ax1, 0, 4000)
Cmk.vlines!(ax1, 80, ymin=0.0, ymax=0.85, color="black",
linestyle=:dashdot)
Cmk.text!(ax1, 81, 1000, text="population mean = 80")
Cmk.bracket!(ax1,
             ex1sampleMeansMean - ex1sampleMeansSd / 2, 3500,
             ex1sampleMeansMean + ex1sampleMeansSd / 2, 3500,
             style=:square)
Cmk.text!(ax1, 72.5, 3700,
          text="sample means sd = 6.33")
Cmk.text!(ax1, 90, 3200,
          text="single sample sd = 17.32")
Cmk.text!(ax1, 90, 3000,
          text="single sample sem = 5.48")
fig

This produces the following graph.

Figure 19:  Figure 18: Histogram of drawing 100’000 random samples
from a population with 𝜇 = 80 and 𝜎 = 20.
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The graph clearly demonstrates that a better approximation of the
samples means sd is a single sample sem and not a single sample sd (as
stated in Section  5.2 ).

I’m not gonna explain the code snippet above in great detail since this
is a warm up exercise, and the tutorials²⁵⁴ (e.g. the basic tutorial) and

²⁵⁴https://docs.makie.org/v0.21/tutorials/getting-started

the documentation for the plotting functions (see the links in Section
5.7.1 ) are pretty good. Moreover, we already used CairoMakie plotting
functions in Section  4.5 . Still, a few quick notes are in order.

First of all, drawing a graph like that is not an enormous feat, you just
need some knowledge (you read the tutorial and the function docs,
right?). The rest is just patience and replication of the examples. Ah
yes, I forgot about the try and error process [that happens from time
to time (OK, more often than I would like to admit) in my case]. If an
error happens, do not panic try to read the error’s message and think
what it tells you).

It is always a good idea to annotate the graph, add the title, x- and y-
axis labels (to make the reader’s, and your own, reasoning easier).
Figures are developed from top to bottom (in the code), layer after
layer (top line of code -> bottom layer on a graph, next line of code
places a layer above the previous layer). First function (fig, Cmk.Axis,
and Cmk.hist!) creates the figure, the following functions
(e.g. Cmk.text! and Cmk.vlines!), write/paint something on the
previous layers. After some time and tweaking you should be able to
produce quite pleasing figures (just remember, patience is the key).
One more point, instead of typing strings by hand (like text="sample
sd = 17.32") you may let Julia do that by using strings
interpolation²⁵⁵ , like text="sample sd = $(round(ex1sampleSd,

²⁵⁵https://docs.julialang.org/en/v1/manual/strings/#string-interpolation

digits=2))"(with time you will appreciate the convenience of this
method).
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One more thing, the :dashdot (after the keyword argument²⁵⁶ 
linetype) is a Symbol²⁵⁷ . For now you may treat it like a string but
written differently, i.e. :dashdot instead of "dashdot".

²⁵⁶https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
²⁵⁷https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols

Solution to Exercise 2
First let’s start with the functions we developed in Section  4 (and its
subsections). We already now them, so I will not explain them here.

function getCounts(v::Vector{T})::Dict{T,Int} where {T}
    counts::Dict{T,Int} = Dict()
    for elt in v
        counts[elt] = get(counts, elt, 0) + 1
    end
    return counts
end

function getProbs(counts::Dict{T,Int})::Dict{T,Float64} where {T}
    total::Int = sum(values(counts))
    return Dict(k => v / total for (k, v) in counts)
end

function getSortedKeysVals(d::Dict{A,B})::Tuple{
    Vector{A},Vector{B}} where {A,B}
    sortedKeys::Vector{A} = keys(d) |> collect |> sort
    sortedVals::Vector{B} = [d[k] for k in sortedKeys]
    return (sortedKeys, sortedVals)
end

Now, time to define getLstatistic based on what we learned in
Section  5.4 (note, the function uses
getAbsGroupDiffsAroundOverallMean and
getAbsPointDiffsFromGroupMeans that we developed in that section).

function getLStatistic(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    absDiffsOverallMean::Vector{<:Real} =
        getAbsGroupDiffsFromOverallMean(v1, v2)
    absDiffsGroupMean::Vector{<:Real} =
        getAbsPointDiffsFromGroupMeans(v1, v2)
    return Stats.mean(absDiffsOverallMean) /
Stats.mean(absDiffsGroupMean)
end
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OK, that was easy, after all we practically did it all before, we only
needed to look for the components in the previous chapters. Now, the
function to determine the distribution.

function getLStatisticsUnderH0(
    popMean::Real, popSd::Real,
    nPerGroup::Int=4, nIter::Int=1_000_000)::Vector{Float64}

    v1::Vector{Float64} = []
    v2::Vector{Float64} = []
    result::Vector{Float64} = zeros(nIter)

    for i in 1:nIter
        v1 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
        v2 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
        result[i] = getLStatistic(v1, v2)
    end

    return result
end

This one is slightly more complicated, so I think a bit of explanation is
in order here. First we initialize some variables that we will use later.
For instance, v1 and v2 will hold random samples drawn from a
population of interest (Dsts.Normal(popMean, popSd)) and will
change with each iteration. The vector result is initialized with 0s and
will hold the LStatistic calculated during each iteration for v1 and
v2. The result vector is returned by the function. Later on we will be
able to use it to getCounts and getProbs for the L-Statistics. This
should work just fine. However, if we slightly modify our function
(getLStatisticsUnderH0), we could use it not only with the L-Statistic
but also F-Statistic (optional points in this task) or any other statistic
of interest. Observe

# getXStatFn signature:
fnName(::Vector{<:Real}, ::Vector{<:Real})::Float64
function getXStatisticsUnderH0(
    getXStatFn::Function,
    popMean::Real, popSd::Real,
    nPerGroup::Int=4, nIter::Int=1_000_000)::Vector{Float64}

    v1::Vector{Float64} = []
    v2::Vector{Float64} = []
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    result::Vector{Float64} = zeros(nIter)

    for i in 1:nIter
        v1 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
        v2 = Rand.rand(Dsts.Normal(popMean, popSd), nPerGroup)
        result[i] = getXStatFn(v1, v2)
    end

    return result
end

Here, instead of getLStatisticsUnderH0 we named the function
getXStatisticsUnderH0, where X is any statistic we can come up
with. The function that calculates our statistic of interest is passed as a
first argument to getXStatisticsUnderH0 (getXStatFn). The
getXStatFn should work just fine, if it accepts two vectors
(::Vector{<:Real}) and returns the statistic of interest (as Float64).
Both those assumptions are fulfilled by getLStatistic (defined above)
and getFStatistic defined in Section  5.4 . To use our
getXStatisticsUnderH0 we would type, e.g.:
getXStatisticsUnderH0(getFStatistic, 25, 3, 4) or
getXStatisticsUnderH0(getLStatistic, 25, 3, 4) instead of
getLStatisticsUnderH0(25, 3, 4) that we defined in our first try (so
more typing, but greater flexibility, and the result would be the same).

Now, to get a distribution of interest we use the following function

# getXStatFn signature:
fnName(::Vector{<:Real}, ::Vector{<:Real})::Float64
function getXDistUnderH0(getXStatFn::Function,
    mean::Real, sd::Real,
    nPerGroup::Int=4, nIter::Int=10^6)::Dict{Float64,Float64}

    xStats::Vector{<:Float64} = getXStatisticsUnderH0(
        getXStatFn, mean, sd, nPerGroup, nIter)
    xStats = round.(xStats, digits=1)
    xCounts::Dict{Float64,Int} = getCounts(xStats)
    xProbs::Dict{Float64,Float64} = getProbs(xCounts)

    return xProbs
end

184



First, we calculate the statistics of interest (xStats), then we round the
statistics to a 1 decimal point (round.(xStats, digits=1)). This is
necessary, since in a moment we will use getCounts so we need some
repetitions in our xStats vector (e.g. 1.283333331 and 1.283333332 will,
both get rounded to 1.3 and the count for this value of the statistic will
be 2). Once we got the counts, we change them to probabilities
(fraction of times that the given value of the statistic occurred) with
getProbs.

Now we can finally, use them to estimate the probability that the L-
statistic greater than LStatisticEx2 = 1.28 occurred by chance.

Rand.seed!(321)
lprobs = getXDistUnderH0(getLStatistic, 25, 3)
lprobsGTLStatisticEx2 = [v for (k, v) in lprobs if k > LStatisticEx2]
lStatProb = sum(lprobsGTLStatisticEx2)

0.045378999999999996

Here, we used a comprehension with if. So, for every key-value pair
((k, v)) that is in lprobs we choose only those whose key (L-Statistic)
is greater than LStatisticEx2 (if k > LStatisticEx2). In the last
step we take only value ([v) from the pair (the value is the probability
of such L-Statistic happening by chance alone) to our result
lprobsGTLStatisticEx2. If this (comprehension with if) is to
complicated for you then you may consider using filter²⁵⁸ and pipe (|>)
the result to values |> collect.

²⁵⁸https://docs.julialang.org/en/v1/base/collections/#Base.filter

The estimated probability for our L-Statistic is 0.045 which is pretty
close to the probability obtained for the F-Statistic
(Ht.OneWayANOVATest(ex2BwtsWater, ex2BwtsDrugY) |> Ht.pvalue
= 0.043) (and well it should).

In virtually the same way we can get the experimental probability of
an F-statistic being greater than getFStatistic(ex2BwtsWater,
ex2BwtsDrugY) = 6.56 by chance. Observe
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Rand.seed!(321)
cutoffFStat = getFStatistic(ex2BwtsWater, ex2BwtsDrugY)
fprobs = getXDistUnderH0(getFStatistic, 25, 3)
fprobsGTFStatisticEx2 = [v for (k, v) in fprobs if k > cutoffFStat]
fStatProb = sum(fprobsGTFStatisticEx2)

0.043154000000000005

Again, the p-value is quite similar to the one we got from a formal
Ht.OneWayANOVATest (as it should be).

OK, now it’s time to draw some plots. First, let’s get the values for x-
and y-axes

Rand.seed!(321)
# L distributions
lxs1, lys1 = getXDistUnderH0(getLStatistic, 25, 3) |> getSortedKeysVals
lxs2, lys2 = getXDistUnderH0(getLStatistic, 100, 50) |>
getSortedKeysVals
lxs3, lys3 = getXDistUnderH0(getLStatistic, 25, 3, 8) |>
getSortedKeysVals
# F distribution
fxs1, fys1 = getXDistUnderH0(getFStatistic, 25, 3) |> getSortedKeysVals

No, big deal L-Distributions start with l, the classical F-Distribution
starts with f. BTW. Notice that thanks to getXDistUnderH0 we didn’t
have to write two almost identical functions (getLDistUnderH0 and
getFDistUnderH0).

OK, let’s place them on the graph

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="F-Distribution (red) and L-Distribution (blue)",
               xlabel="Value of the statistic",
               ylabel="Probability of outcome")
l1 = Cmk.lines!(ax1, fxs1, fys1, color="red")
l2 = Cmk.lines!(ax1, lxs1, lys1, color="blue")
sc1 = Cmk.scatter!(ax1, lxs2, lys2, color="blue", marker=:circle)
sc2 = Cmk.scatter!(ax1, lxs3, lys3, color="blue", marker=:xcross)
Cmk.vlines!(ax1, LStatisticEx2, color="lightblue", linestyle=:dashdot)
Cmk.text!(ax1, 1.35, 0.1,
          text="L-Statistic = 1.28")
Cmk.xlims!(ax1, 0, 4)
Cmk.ylims!(ax1, 0, 0.25)
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Cmk.axislegend(ax1,
    [l1, l2, sc1, sc2],
    [
        "F-Statistic(1, 6) [Dsts.Normal(25, 3), n = 4]",
        "L-Statistic [Dsts.Normal(25, 3), n = 4]",
        "L-Statistic [Dsts.Normal(100, 50), n = 4]",
        "L-Statistic [Dsts.Normal(25, 3), n = 8]"
    ],
    "Distributions
(num groups = 2,
n - num observations per group)",
    position=:rt)
fig

Behold

Figure 20:  Figure 19: Experimental F- and L-Distributions.

Wow, what a beauty.

A few points of notice. Before, we calculated the probability
(lStatProb) of getting the L-Statistic value greater than the vertical
light blue line (the area under the blue curve to the right of that line).
This is a one tail probability only. Interestingly, for the L-Distribution
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the mean and sd in the population of origin are not that important
(blue circles for Dsts.Normal(100, 50) lie exactly on the blue line for
Dsts.Normal(25, 3)). However, the number of groups and the
number of observations per group affect the shape of the distribution
(blue xcrosses for Dsts.Normal(25, 3) n = 8 diverge from the blue
curve for Dsts.Normal(25, 3) n = 4).

The same is true for the F-Distribution. That is why the F-Distribution
depends only on the degrees of freedom (Dsts.FDist(dfGroup,
dfResidual)). The degrees of freedom depend on the number of
groups and the number of observations per group.

Solution to Exercise 3
OK, let’s start with functions for checking the assumptions.

function
areAllDistributionsNormal(vects::Vector{<:Vector{<:Real}})::Bool
    return [getSWtestPval(v) for v in vects] |>
           pvals -> map(pv -> pv > 0.05, pvals) |>
                    all
end

function areAllVariancesEqual(vects::Vector{<:Vector{<:Real}})
    return Ht.FlignerKilleenTest(vects...) |>
        Ht.pvalue |> pv -> pv > 0.05
end

The functions above are basically just wrappers around the code we
wrote in Section  5.5 . Now, time for getPValUnpairedTest

function getPValUnpairedTest(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Float64

    normality::Bool = areAllDistributionsNormal([v1, v2])
    homogeneity::Bool = areAllVariancesEqual([v1, v2])

    return (
        (normality && homogeneity) ? Ht.EqualVarianceTTest(v1, v2) :
        (normality) ? Ht.UnequalVarianceTTest(v1, v2) :
        Ht.MannWhitneyUTest(v1,v2)
        ) |> Ht.pvalue
end
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The code is rather self-explanatory, of course if you remember the
ternary expression from Section  3.5.2 and Section  3.9.4 .

Let’s test our newly created function with the data from Section  5.3.2
(miceBwt)

getPValUnpairedTest([miceBwt[!, n] for n in Dfs.names(miceBwt)]...) |>
x -> round(x, digits=4)

0.0804

The p-value is the same as in Section  5.3.2 (as it should be), but this
time we didn’t have to explicitly check the assumptions before
applying the appropriate test.

Solution to Exercise 4
First, let’s start with a helper function that will return us all the
possible pairs from a vector.

function getUniquePairs(uniqueNames::Vector{T})::Vector{Tuple{T,T}}
where T

    @assert (length(uniqueNames) >= 2) "the input must be of length >=
2"

    uniquePairs::Vector{Tuple{T,T}} =
        Vector{Tuple{T,T}}(undef, binomial(length(uniqueNames), 2))
    currInd::Int = 1

    for i in eachindex(uniqueNames)[1:(end-1)]
        for j in eachindex(uniqueNames)[(i+1):end]
            uniquePairs[currInd] = (uniqueNames[i], uniqueNames[j])
            currInd += 1
        end
    end

    return uniquePairs
end

The function is generic, so it can be applied to vector of any type (T),
here designed as Vector{T}. It starts by initializing an empty vector
(uniquePairs) to hold the results. The initialization takes the following
form: Vector{typeOfVectElements}(iniaialValues,
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lengthOfTheVector). The vector is filled with undefs (undefined
values, some garbage) as placeholders. The size of the new vector is
calculated by the binomial²⁵⁹ function. It is applied in the form

²⁵⁹https://docs.julialang.org/en/v1/base/math/#Base.binomial

binomial(n, k) where n is number of values to choose from and k is
number of values per group. The function returns the number of
possible groups of a given size. The rest is just iteration (for loops)
over the indexes (eachindex) of the uniqueNames vector to get all the
possible pairs. Let’s quickly check if the function works as expected.

(
    getUniquePairs([10, 20]),
    getUniquePairs([1.1, 2.2, 3.3]),
    getUniquePairs(["w", "x", "y", "z"]), # vector of one element
Strings
    getUniquePairs(['a', 'b', 'c']), # vector of Chars
    getUniquePairs(['a', 'b', 'a']) # uniqueNames must be unique (of
course)
)

([(10, 20)],
 [(1.1, 2.2), (1.1, 3.3), (2.2, 3.3)],
 [("w", "x"), ("w", "y"), ("w", "z"), ("x", "y"), ("x", "z"), ("y",
"z")],
 [('a', 'b'), ('a', 'c'), ('b', 'c')],
 [('a', 'b'), ('a', 'a'), ('b', 'a')])

Note: The group (“w”, “x”) is the same group as (“x”, “w”). In other
words, we don’t care about the order of elements in a group. The
function works correctly if uniqueNames argument contains
unique elements (compare with the last example that contains a
duplicate value). If you want you can add an additional check to
make sure that the uniqueNames are really unique (think/search
the internet how to do that), but I will leave it as it is.

OK, now it’s time for getPValsUnpairedTests
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# df - DataFrame: each column is a continuous variable (one group)
# returns uncorrected p-values
function getPValsUnpairedTests(
    df::Dfs.DataFrame)::Dict{Tuple{String,String},Float64}

    pairs::Vector{Tuple{String,String}} = getUniquePairs(Dfs.names(df))
    pvals::Vector{Float64} = [
        getPValUnpairedTest(df[!, a], df[!, b])
        for (a, b) in pairs
    ]

    return Dict(pairs[i] => pvals[i] for i in eachindex(pairs))
end

First, we obtain the pairs of group names that we will compare later
(pairs). In the next few lines we use a comprehension to obtain the p-
values. Since each element of pairs vector is a tuple (e.g. [("spA",
"spB"), etc.]) we assign its elements to a and b (for (a, b)) and
pass them to df to get the values of interest (e.g. df[!, a]). The values
are send to getPValUnpairedTest from the previous section. We
terminate (return) with another comprehension that creates a
dictionary with the desired result.

Let’s see how the function works and compare the results with the
ones we obtained in Section  5.5 .

getPValsUnpairedTests(miceBwtABC)

Dict{Tuple{String, String}, Float64} with 3 entries:
  ("spA", "spB") => 0.0251115
  ("spA", "spC") => 0.000398545
  ("spB", "spC") => 0.0493322

OK, the uncorrected p-values are the same as in Section  5.5 .

Now, the improved version.

# df - DataFrame: each column is a continuous variable (one group)
# returns corrected p-values
function getPValsUnpairedTests(
    df::Dfs.DataFrame,
    multCorr::Type{M}
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)::Dict{Tuple{String,String},Float64} where {M<:Mt.PValueAdjustment}

    pairs::Vector{Tuple{String,String}} = getUniquePairs(Dfs.names(df))
    pvals::Vector{Float64} = [
        getPValUnpairedTest(df[!, a], df[!, b])
        for (a, b) in pairs
    ]
    pvals = Mt.adjust(pvals, multCorr())

    return Dict(pairs[i] => pvals[i] for i in eachindex(pairs))
end

Don’t worry about the strange type declarations like ::Type{M} and
where {M<:Mt.PValueAdjustment}. I added them for the sake of
consistency (after reading the code in the package repo²⁶⁰ and some try

²⁶⁰https://github.com/juliangehring/MultipleTesting.jl

and error). When properly called, the function should work equally
well without those parts.

Anyway, it wasn’t that bad, we basically just added a small piece of
code (multCorr in the arguments list and pvals = Mt.adjust(pvals,
multCorr()) in the function body) similar to the one in Section  5.6 .

Let’s see how it works.

# Bonferroni correction
getPValsUnpairedTests(miceBwtABC, Mt.Bonferroni)

Dict{Tuple{String, String}, Float64} with 3 entries:
  ("spA", "spB") => 0.0753345
  ("spA", "spC") => 0.00119563
  ("spB", "spC") => 0.147997

That looks quite alright. Time for one more swing.

# Benjamini-Hochberg correction
getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg)

Dict{Tuple{String, String}, Float64} with 3 entries:
  ("spA", "spB") => 0.0376673
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  ("spA", "spC") => 0.00119563
  ("spB", "spC") => 0.0493322

Again, the p-values appear to be the same as those we saw in Section
5.6 .

Solution to Exercise 5
OK, let’s do this step by step. First let’s draw a bare box-plot (no group
names, no significance markers, titles, etc.).

The docs for Cmk.boxplot²⁶¹ show that to do that we need two vectors
for xs and ys (values to be placed on the x- and y-axis respectively).
Both need to be of numeric types. We can achieve it by typing, e.g.

²⁶¹https://docs.makie.org/stable/examples/plotting_functions/boxplot/index.
html#boxplot

# Step 1
ex5nrows = size(miceBwtABC)[1] #1
ex5names = Dfs.names(miceBwtABC) #2
ex5xs = repeat(eachindex(ex5names), inner=ex5nrows) #3
ex5ys = [miceBwtABC[!, n] for n in ex5names] #4
ex5ys = vcat(ex5ys...) #5

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1])
Cmk.boxplot!(ax1, ex5xs, ex5ys)
fig

In the first line (#1) we get the dimensions of our data frame,
size(miceBwtABC) returns a tuple (numberOfRows,
numberOfColumns) from which we take only the first part
(numberOfRows) that we will need later. In line 3 (#3) we assign a
number to the names (eachindex(vect) returns a sequence
1:length(vect), e.g. [1, 2, 3]). We multiply each number the same
amount of times (ex5nrows) using repeat (e.g. repeat([1, 2, 3],
inner=2) returns [1, 1, 2, 2, 3, 3]). In line 4 and 5 (#4 and #5) we
take all the body weights from columns and put them into a one long
vector (ex5ys). We end up with two vectors: groups coded as integers
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and body weights. Finally, we check if it works by running
Cmk.boxplot!(fig[1, 1], ex5xs, ex5ys). The result is below.

Figure 21:  Figure 20: Box-plot for exercise 5. Step 1.

Now, let’s add title, label the axes, etc.

# Step 2
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="Body mass of three mice species",
               xlabel="species name", ylabel="body mass [g]",
               xticks=(eachindex(ex5names), ex5names))
Cmk.boxplot!(ax1, ex5xs, ex5ys, whiskerwidth=0.5)
fig

The new part here is the xticks argument. It takes a tuple of ticks on x
axis (1:3 in Figure  20 ) and a vector of strings (ex5names) to be
displayed instead of those values. The meaning of whiskerwidth is
pretty intuitive, it adds a horizontal bar of desired width at the end of
the whiskers. The result is placed below.
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Figure 22:  Figure 21: Box-plot for exercise 5. Step 2.

Let’s move on to the significance markers. First, let’s hard-code them
and produce a plot (just to see if it works), then we will introduce
some improvements.

# Step 3
fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="Body mass of three mice species",
               xlabel="species name", ylabel="body mass [g]",
               xticks=(eachindex(ex5names), ex5names))
Cmk.boxplot!(ax1, ex5xs, ex5ys, whiskerwidth=0.5)
Cmk.text!(ax1,
          eachindex(ex5names), [30, 30, 30],
          text=["", "a", "ab"],
          align=(:center, :top), fontsize=20)
fig

OK, we’re almost there (see figure below).
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Figure 23:  Figure 22: Box-plot for exercise 5. Step 3.

However, it appears that we still need a few things:

1) a way to generate y-values for Cmk.text! (for now it is [30, 30,
30], but other dataframes may have different value ranges,
e.g. [200-250] and then the markers would be placed too low)

2) a way to generate the markers (e.g. ["", "a", "ab"] based on p-
values) over the appropriate boxes

The first problem can be solved in the following way:

# Step 4
ex5marksYpos = [maximum(miceBwtABC[!, n]) for n in ex5names] #1
ex5marksYpos = map(mYpos -> round(Int, mYpos * 1.1), ex5marksYpos) #2
ex5upYlim = maximum(ex5ys * 1.2) |> x -> round(Int, x) #3
ex5downYlim = minimum(ex5ys * 0.8) |> x -> round(Int, x) #4

Here, in the first line (#1) we get maximum values from every group.
Then (#2) we increase them by 10% (* 1.1) and round them to the
closest integers (round(Int,). At this height (y-axis) we are going to
place our significance markers. Additionally, in lines 3 and 4 (#3 and
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#4) we found the maximum and minimum values (for all the data). We
increase (* 1.2) and decrease (* 0.8) the values by 20%. The rounded
(to the nearest integer) values will be the maximum and minimum
values displayed on the y-axis of our graph.

Now, time for a function that will translate p-values to significance
markers.

# Step 5
function getMarkers(
    pvs::Dict{Tuple{String,String},Float64},
    groupsOrder=["spA", "spB", "spC"],
    markerTypes::Vector{String}=["a", "b", "c"],
    cutoffAlpha::Float64=0.05)::Vector{String}

    @assert (
        length(groupsOrder) == length(markerTypes)
    ) "different groupsOrder and markerTypes lengths"
    @assert (0 <= cutoffAlpha <= 1) "cutoffAlpha must be in range [0-1]"

    markers::Vector{String} = repeat([""], length(groupsOrder))
    tmpInd::Int = 0

    for i in eachindex(groupsOrder)
        for ((g1, g2), pv) in pvs
            if (groupsOrder[i] == g1) && (pv <= cutoffAlpha)
                tmpInd = findfirst(x -> x == g2, groupsOrder)
                markers[tmpInd] *= markerTypes[i]
            end
        end
    end

    return markers
end

Here, getMarkers accepts p-values in the format returned by
getPValsUnpairedTests defined in Section  5.8.4 . Another input
argument is groupsOrder which contains the position of groups
(boxes, x-axis labels) in Figure  22 from left to right. The third
argument is makrerTypes so a symbol that is to be used if a statistical
difference for a given group is found.

The function defines markers (the strings placed over each box with
Cmk.txt) initialized with a vector of empty strings. Next, it walks
through each index in group (eachindex(groups)) and checks the
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((g1, g2), pv) in p-values (pvs). If g1 is equal to the examined group
(groups[i] == g1) and the p-value (pv) is ≤ the cutoff level then the
appropriate marker (markerTypes[i]) is inserted by string
concatenation²⁶² with an update operator²⁶³ (*=). Which maker to

²⁶²https://docs.julialang.org/en/v1/manual/strings/#man-concatenation
²⁶³https://docs.julialang.org/en/v1/manual/mathematical-operations/#Updating-

operators

change is determined by the index of g2 in the groups returned by
findfirst²⁶⁴ function. In general, g2 receives a marker when it is
statistically different from g1 (pv < cutoffAlpha).

²⁶⁴https://docs.julialang.org/en/v1/base/strings/#Base.findfirst-Tuple%7BAbstract
String,%20AbstractString%7D

Let’s test our function

(
getMarkers(
    getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg),
    ["spA", "spB", "spC"],
    ["a", "b", "c"],
    0.05),

getPValsUnpairedTests(miceBwtABC, Mt.BenjaminiHochberg)
)

(["", "a", "ab"],
Dict(("spA", "spB") => 0.0376672521079031,
("spA", "spC") => 0.001195633577293774,
("spB", "spC") => 0.049332195639921715))

The markers appear to be OK (they reflect the p-values well).

Now, it is time to pack it all into a separate function

# Step 6

# the function should work fine for up to 26 groups in the df's columns
function drawBoxplot(
    df::Dfs.DataFrame, title::String,
    xlabel::String, ylabel::String)::Cmk.Figure

    nrows, _ = size(df)
    ns::Vector{String} = Dfs.names(df)
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    xs = repeat(eachindex(ns), inner=nrows)
    ys = [df[!, n] for n in ns]
    ys = vcat(ys...)
    marksYpos = [maximum(df[!, n]) for n in ns]
    marksYpos = map(mYpos -> round(Int, mYpos * 1.1), marksYpos)
    upYlim = maximum(ys * 1.2) |> x -> round(Int, x)
    downYlim = minimum(ys * 0.8) |> x -> round(Int, x)
    # 'a':'z' generates all lowercase chars of the alphabet
    markerTypes::Vector{String} = map(string, 'a':'z')
    markers::Vector{String} = getMarkers(
        getPValsUnpairedTests(df, Mt.BenjaminiHochberg),
        ns,
        markerTypes[1:length(ns)],
        0.05
    )

    fig = Cmk.Figure()
    ax1 = Cmk.Axis(fig[1, 1],
                   title=title, xlabel=xlabel, ylabel=ylabel,
                   xticks=(eachindex(ns), ns))
    Cmk.boxplot!(ax1, xs, ys, whiskerwidth=0.5)
    Cmk.ylims!(ax1, downYlim, upYlim)
    Cmk.text!(ax1,
              eachindex(ns), marksYpos,
              text=markers, align=(:center, :top), fontsize=20)

    return fig
end

and run it

drawBoxplot(miceBwtABC,
    "Body mass of three mice species",
    "species name",
    "body mass [g]"
)

And voilà this is your result
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Figure 24:  Figure 23: Boxplot of body mass of three mice species
(fictitious data). Steps 1-6 (completed). a - difference vs. spA (p < 0.05),

b - difference vs. spB (p < 0.05).

Once again (we said this already in the task description see Section
5.7.5 ). In the graph above a middle horizontal line in a box is the
median²⁶⁵ , a box depicts interquartile range²⁶⁶ (IQR), the whiskers

²⁶⁵https://en.wikipedia.org/wiki/Median
²⁶⁶https://en.wikipedia.org/wiki/Interquartile_range

length is equal to 1.5 * IQR (or the maximum and minimum if they are
smaller than 1.5 * IQR).

You could make the function more plastic, e.g. by moving some of its
insides to its argument list. But this form will do for now. You may
want to test the function with some other output, even with miceBwt
from Section  5.3 (here it should draw a box-plot with no statistical
significance markers).
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Note: The code we developed in the exercises
(e.g. getPValsUnpairedTests, drawBoxplot) is to help us
automate stuff, still it shouldn’t be applied automatically (think
before you leap).
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Comparisons - categorical data

OK, once we have comparisons of continuous data under our belts we
can move to groups of categorical data.

Chapter imports
Later in this chapter we are going to use the following libraries

import CairoMakie as Cmk
import DataFrames as Dfs
import Distributions as Dsts
import HypothesisTests as Ht
import MultipleTesting as Mt
import Random as Rand

If you want to follow along you should have them installed on your
system. A reminder of how to deal (install and such) with packages
can be found here²⁶⁷ . But wait, you may prefer to use Project.toml

²⁶⁷https://docs.julialang.org/en/v1/stdlib/Pkg/

and Manifest.toml files from the code snippets for this chapter²⁶⁸ to
install the required packages. The instructions you will find here²⁶⁹ .

²⁶⁸https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06
²⁶⁹https://pkgdocs.julialang.org/v1/environments/

The imports will be placed in the code snippet when first used, but I
thought it is a good idea to put them here, after all imports should be
at the top of your file (so here they are at the top of the chapter).
Moreover, that way they will be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of
unknown functionality, just go to the code snippets mentioned above
and run the code from the *.jl file. Once you have done that you can
always extract a small piece of it and test it separately (modify and
experiment with it if you wish).

Flashback
We deal with categorical data when a variable can take a value from a
small set of values. Each element of the set is clearly distinct from the
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other elements. For instance the results of coin tosses or dice rolls fall
into one of a few distinctive categories. As stated in Section  4 and its
subsections the result of a coin toss often displays the binomial
distribution. In line with that notion, in Exercise 3 (see Section  4.8.3
and Section  4.9.3 ) we calculated the probability that Peter is a better
tennis player than John if he won 5 games out of 6. The two-tailed
probability was roughly equal to 0.22. Once we know the logic behind
the calculations (see Section  4.9.3 ) we can fast forward to the solution
with Ht.BinomialTest²⁷⁰ like so

²⁷⁰https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test

import HypothesisTests as Ht

Ht.BinomialTest(5, 6, 0.5)
# or just: Ht.BinomialTest(5, 6)
# since 0.5 is the default prob. for the population

Binomial test
-------------
Population details:
    parameter of interest:   Probability of success
    value under h_0:         0.5
    point estimate:          0.833333
    95% confidence interval: (0.3588, 0.9958)

Test summary:
    outcome with 95% confidence: fail to reject h_0
    two-sided p-value:           0.2187

Details:
    number of observations: 6
    number of successes:    5

Works like a charm. Don’t you think. Here we got a two-tailed p-value.
By oversimplifying stuff we can say that the 95% confidence interval is
an estimate of the true probability of Peter’s victory in a game (from
data it is 5/6 = 0.83) and it includes 0.5 (our probability under 𝐻0 =
0.5). I leave the rest of the output to decipher to you (as a mini-
exercise).
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In general Ht.BinomialTest is useful when you want to compare the
obtained experimental result that may fall into one of two categories
(generally called: success or failure) with a theoretical binomial
distribution with a known probability of success (we check if the
obtained result is compatible with that distribution). If we interpret
this statement in a more creative way we may find other use cases for
the test.

Let’s look at an interesting example from the field of biological
sciences. Imagine that there is some disease that you want to study. Its
prevalence in the general population is estimated to be ≈ 10100  = 0.1 =
10% . You happened to found a human population on a desert island
and noticed that 519 adults out of 3’202 suffer from the disease of
interest. You run the test to see if that differs from the general
population [here success (if I may call it so) is the presence of the
disease, and theoretical distribution is the distribution of the disease in
the general population].

Ht.BinomialTest(519, 3202, 0.1)

Binomial test
-------------
Population details:
    parameter of interest:   Probability of success
    value under h_0:         0.1
    point estimate:          0.162086
    95% confidence interval: (0.1495, 0.1753)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           <1e-26

Details:
    number of observations: 3202
    number of successes:    519

And it turns out that it does. Congratulations, you discovered a local
population with a different, clearly higher prevalence of the disease.
Now you (or other people) can study the population closer (e.g. gene
screening) in order to find the features that trigger the onset of (or
predispose to develop) the disease.
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The story is not that far fetched since there are human populations
that are of particular interest to scientists due to their unusually
common occurrence of some diseases (e.g.  the Akimel O’odham²⁷¹ and
their high prevalence of type 2 diabetes²⁷² ).

²⁷¹https://en.wikipedia.org/wiki/Akimel_O%27odham
²⁷²https://en.wikipedia.org/wiki/Type_2_diabetes

Chi squared test
We finished the previous section by comparing the proportion of
subjects with some feature to the reference population. For that we
used Ht.BinomialTest. As we learned in Section  4.6 the word
binomial means two names. Those names could be anything, like heads
and tails, victory and defeat, but most generally they are called success
and failure (success when an event occurred and failure when it did
not). We can use a to denote individuals with the feature of interest
and b to denote the individuals without that feature. In that case n is
the total number of individuals (here, individuals with either a or b).
That means that by doing Ht.BinomialTest we compared the sample
fraction (e.g. 𝑎𝑛  or equivalently 𝑎

𝑎+𝑏 ) with the assumed fraction of
individuals with the feature of interest in the general population.

Now, imagine a different situation. You take the samples from two
populations, and observe the eye color²⁷³ of people. You want to know

²⁷³https://en.wikipedia.org/wiki/Eye_color

if the percentage of people with blue eyes in the two populations is
similar. If it is, then you may deduce they are closely related (perhaps
one stems from the other). Let’s not look too far, let’s just take the
population of the US and UK. Inspired by the Wikipedia’s page from
the link above and supported by the random number generator in Julia
I came up with the following counts.

import DataFrames as Dfs

dfEyeColor = Dfs.DataFrame(
    Dict(
        "eyeCol" => ["blue", "any"],
        "us" => [161, 481],
        "uk" => [220, 499]
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    )
)

eyeCol uk us
blue 220 161
any 499 481

Table 5: Table 5: Eye color distribution in two samples (fictitious data).

Here, we would like to compare if the two proportions (𝑎1𝑛1 =
161
481  and 

𝑎2
𝑛2
= 220

499 ) are roughly equal (𝐻0: they come from the same population
with some fraction of blue eyed people). Unfortunately, one look into
the docs²⁷⁴ and we see that we cannot use Ht.BinomialTest (the test

²⁷⁴https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Binomial-test

compares sample with a population, here we got two samples to
compare). But do not despair that’s the job for Ht.ChisqTest²⁷⁵ (see also

²⁷⁵https://juliastats.org/HypothesisTests.jl/stable/parametric/#Pearson-chi-
squared-test

this Wikipedia’s entry²⁷⁶ ). First we need to change our data slightly,

²⁷⁶https://en.wikipedia.org/wiki/Chi-squared_test

because the test requires a matrix (aka array from Section  3.3.7 ) with
the following proportions in columns: 𝑎1𝑏1  and 𝑎2𝑏2  (b instead of n, where
n = a + b). Let’s adjust our data for that.

# subtracting eye color "blue" from eye color "any"
dfEyeColor[2, 2:3] = Vector(dfEyeColor[2, 2:3]) .-
    Vector(dfEyeColor[1, 2:3])
# renaming eye color "any" to "other" (it better reflects current
content)
dfEyeColor[2, 1] = "other"
dfEyeColor

# all the elements must be of the same (numeric) type
mEyeColor = Matrix{Int}(dfEyeColor[:, 2:3])
mEyeColor

2×2 Matrix{Int64}:
 220  161
 279  320
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OK, we got the necessary data structure. Here, Matrix{Int}() closed
over dfEyeColor[:, 2:3] extracts the needed part of the data frame
and converts it to a matrix (aka array) of integers. And now for the 𝜒2
(chi squared) test.

Ht.ChisqTest(mEyeColor)

Pearson's Chi-square Test
-------------------------
Population details:
    parameter of interest:   Multinomial Probabilities
    value under h_0:         [0.197958, 0.311226, 0.190817, 0.299999]
    point estimate:          [0.22449, 0.284694, 0.164286, 0.326531]
    95% confidence interval:
     [(0.193, 0.2595), (0.2501, 0.322), (0.1369, 0.196), (0.2903,
0.3649)]

Test summary:
    outcome with 95% confidence: reject h_0
    one-sided p-value:           0.0007

Details:
    Sample size:        980
    statistic:          11.616133413434031
    degrees of freedom: 1
    residuals:          [1.86677, -1.48881, -1.90138, 1.51641]
    std. residuals:     [3.40824, -3.40824, -3.40824, 3.40824]

OK, first of all we can see right away that the p-value is below the
customary cutoff level of 0.05 or even 0.01. This means that the
samples do not come from the same population (we reject 𝐻0). More
likely they came from the populations with different underlying
proportions of blue eyed people. This could indicate for instance, that
the population of the US stemmed from the UK (at least partially) but
it has a greater admixture of other cultures, which could potentially
influence the distribution of blue eyed people. Still, this is just an
exemplary explanation, I’m not an anthropologist, so it may well be
incorrect. Additionally, remember that the data is fictitious and was
generated by me.
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Anyway, I’m pretty sure You got the part with the p-value on your
own, but what are some of the other outputs. Point estimates are the
observed probabilities in each of the cells from mEyeColor. Observe

# total number of observations
nObsEyeColor = sum(mEyeColor)

chi2pointEstimates = [mEyeColor...] ./ nObsEyeColor
round.(chi2pointEstimates, digits = 6)

[0.22449, 0.284694, 0.164286, 0.326531]

The [mEyeColor...] flattens the 2x2 matrix (2 rows, 2 columns) to a
vector (column 2 is appended to the end of column 1). The ./
nObsEyeColor divides the observations in each cell by the total
number of observations.

95% confidence interval is a 95% confidence interval (who would
have guessed) similar to the one explained in Section  5.2.1 for
Ht.OneSampleTTest but for each of the point estimates in
chi2pointEstimates. Some (over)simplify it and say that within those
limits the true probability for this group of observations most likely
lies.

As for the value under h_0 those are the probabilities of the
observations being in a given cell of mEyeColor assuming 𝐻0 is true.
But how to get that probabilities. Well, in a similar way to the method
we met in Section  4.3 . Back then we answered the following question:
If parents got blood groups AB and O then what is the probability that
a child will produce a gamete with allele A? The answer: proportion of
children with allele A and then the proportion of their gametes with
allele A (see Section  4.3 for details). We calculated it using the
following formula

𝑃(𝐴 𝑖𝑛 𝐶𝐺) = 𝑃(𝐴 𝑖𝑛 𝐶)*𝑃(𝐴 𝑖𝑛 𝑔𝑎𝑚𝑒𝑡𝑒𝑠 𝑜𝑓 𝐶 𝑤𝑖𝑡ℎ 𝐴)

Getting back to our mEyeColor the expected probability of an
observation falling into a given cell of the matrix is the probability of
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an observation falling into a given column times the probability of an
observation falling into a given row. Observe

# cProbs - probability of a value to be found in a given column
cProbs = [sum(c) for c in eachcol(mEyeColor)] ./ nObsEyeColor
# rProbs - probability of a value to be found in a given row
rProbs = [sum(r) for r in eachrow(mEyeColor)] ./ nObsEyeColor

# probability of a value to be found in a given cell of mEyeColor
# under H_0 (the samples are from the same population)
probsUnderH0 = [cp * rp for cp in cProbs for rp in rProbs]
round.(probsUnderH0, digits = 6)

[0.197958, 0.311226, 0.190817, 0.299999]

Here, [cp * rp for cp in cProbs for rp in rProbs] is an example
of nested for loops²⁷⁷ enclosed in a comprehension. Notice that in the

²⁷⁷https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#
Nested_loops

case of this comprehension there is no comma before the second for
(the comma is present in the long, non-comprehension version of
nested for loops in the link above).

Anyway, note that since the calculations from Section  4.3 assumed the
probability independence, then the same assumption is made here.
That means that, e.g. a given person cannot be classified at the same
time as the citizen of the US and UK since we would have openly
violated the assumption (some countries allow double citizenship, so
you should think carefully about the inclusion criteria for the
categories). Moreover, the eye color also needs to be a clear cut.

Out of the remaining output we are mostly interested in the
statistic, namely 𝜒2 (chi square) statistic. Under the null hypothesis
(𝐻0, both groups come from the same population with a given fraction
of blue eyed individuals) the probability distribution for counts to
occur is called 𝜒2 (chi squared) distribution. Next, we calculate 𝜒2 (chi
squared) statistic for the observed result (from mEyeColor). Then, we
obtain the probability of a statistic greater than that to occur by
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chance. This is similar to the F-Statistic (Section  5.4 ) and L-Statistic
(Section  5.8.2 ) we met before. Let’s see this in practice

observedCounts = [mEyeColor...]
expectedCounts = probsUnderH0 .* nObsEyeColor
# the statisticians love squaring numbers, don't they
chi2Diffs = ((observedCounts .- expectedCounts) .^2) ./ expectedCounts
chi2Statistic = sum(chi2Diffs)

(
    observedCounts,
    round.(expectedCounts, digits = 4),
    round.(chi2Diffs, digits = 4),
    round(chi2Statistic, digits = 4)
)

([220, 279, 161, 320],
[193.999, 305.001, 187.001, 293.999],
[3.4848, 2.2166, 3.6152, 2.2995],
11.6161)

The code is rather self explanatory. BTW. You might have noticed that:
a) statisticians love squaring numbers (differences), and b) there are
some similarities to the calculations of expected values from Section
4.5 . Anyway, now, we can use the 𝜒2 statistic to get the p-value, like
so

import Distributions as Dsts

function getDf(matrix::Matrix{Int})::Int
    nRows, nCols = size(matrix)
    return (nRows - 1) * (nCols - 1)
end

# p-value
# alternative: Dsts.ccdf(Dsts.Chisq(getDf(mEyeColor)), chi2Statistic)
1 - Dsts.cdf(Dsts.Chisq(getDf(mEyeColor)), chi2Statistic) |>
    x -> round(x, digits = 4)

0.0007

So, the pattern is quite similar to what we did in the case of F-
Distribution/Statistic in Section  5.7.2 . First we created the distribution
of interest with the appropriate number of the degrees of freedom
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(why only the degrees of freedom matter see the conclusion of Section
5.8.2 ). Then we calculated the probability of a 𝜒2 Statistic being
greater than the observed one by chance alone and that’s it.

Fisher’s exact test
This was all nice, but there is a small problem with the 𝜒2 test, namely
it relies on some approximations and works well only for large sample
sizes. How large, well, I’ve heard about the rule of fives (that’s what I
called it). The rule states that there should be >= 50 (not quite 5)
observations per matrix and >= 5 expected observations per cell
(applies to every cell). In case this assumption does not hold, one
should use, e.g.  Fisher’s exact test²⁷⁸ (Fisher, yes, I think I heard that
name before).

²⁷⁸https://en.wikipedia.org/wiki/Fisher%27s_exact_test

So let’s assume for a moment that we were able to collect somewhat
less data like in the matrix below:

mEyeColorSmall = round.(Int, mEyeColor ./ 20)
mEyeColorSmall

2×2 Matrix{Int64}:
 11   8
 14  16

Here, we reduced the number of observations 20 times compared to
the original mEyeColor matrix from the previous section. Since the test
we are going to apply ( Ht.FisherExactTest²⁷⁹ ) requires integers then

²⁷⁹https://juliastats.org/HypothesisTests.jl/stable/nonparametric/#Fisher-exact-
test

instead of rounding a number to 0 digits [e.g. round(12.3, digits =
0) would return 12.0, so Float64] we asked the round function to
deliver us the closest integers (e.g. 12).

OK, let’s, run the said Ht.FisherExactTest. Right away we see a
problem, the test requires separate integers as input:
Ht.FisherExactTest(a::Integer, b::Integer, c::Integer,
d::Integer).
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Note: Just like Real type from Section  3.4 also Integer is a
supertype. It encompasses, e.g. Int and BigInt we met in Section
3.9.5 .

Still, we can obtain the necessary results very simply, by:

# assignment goes column by column (left to right), value by value
a, c, b, d = mEyeColorSmall

Ht.FisherExactTest(a, b, c, d)

Fisher's exact test
-------------------
Population details:
    parameter of interest:   Odds ratio
    value under h_0:         1.0
    point estimate:          1.55691
    95% confidence interval: (0.4263, 5.899)

Test summary:
    outcome with 95% confidence: fail to reject h_0
    two-sided p-value:           0.6373

Details:
    contingency table:
        11   8
        14  16

We are not going to discuss the output in detail. Still, we can see that
here due to the small sample size we don’t have enough evidence to
reject the 𝐻0 (p > 0.05) on favor of 𝐻𝐴. Interestingly, due to the small
sample size we came to a different conclusion despite the same
underlying populations and the same proportions. Let’s make an
analogy here and let’s take it to an extreme. Imagine I got two coins in
my pocket, one fair (50/50 heads to tails rate) and one biased (70/30
heads to tails ratio). I give you one to find out which coin it is. That’s
easy to settle out with 1’000 tosses (since you wold get, e.g. 688/312
heads to tails ratio instead of 494/506), but it is not possible to do it
with just one toss (no matter the outcome). With three tosses and two
heads we still cannot be sure of it since a fair coin would have
produced this exact output with the probability of 37.5% (HHT, or THH,
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or HTH each with p = 123 =
1
8 = 0.125) and more extreme (HHH) with

the probability = 12.5% ( 123 =
1
8  = 0.125). So, there just wouldn’t be

enough evidence.

Bigger table
We started Section  6.3 with a fictitious eye color distribution [blue
and other, rows (top-down) in the matrix below] in the US and UK
[columns (left-right) in the matrix below].

mEyeColor

2×2 Matrix{Int64}:
 220  161
 279  320

But in reality there are more eye colors than just blue and other. For
instance let’s say that in humans we got three types of eye color: blue,
green, and brown. Let’s adjust our table for that:

# 3 x 2 table (DataFrame)
dfEyeColorFull = Dfs.DataFrame(
    Dict(
        # "other" from dfEyeColor is split into "green" and "brown"
        "eyeCol" => ["blue", "green", "brown"],
        "us" => [161, 78, 242],
        "uk" => [220, 149, 130]
    )
)

mEyeColorFull = Matrix{Int}(dfEyeColorFull[:, 2:3])
mEyeColorFull

3×2 Matrix{Int64}:
 220  161
 149   78
 130  242

Can we say that the two populations differ (with respect to the eye
color distribution) given the data in this table? Well, we can, that’s the
job for … chi squared (𝜒2) test.
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Wait, but I thought it is used to compare two proportions found in
some samples. Granted, it could be used for that, but in broader sense
it is a non-parametric test that determines the probability that the
difference between the observed and expected frequencies (counts)
occurred by chance alone. Here, non-parametric means it does not
assume a specific underlying distribution of data (like the normal or
binomial distribution we met before). As we learned in Section  6.3 the
expected distribution of frequencies (counts) is assessed based on the
data itself.

Let’s give it a try with our new data set (mEyeColorFull) and compare
it with the previously obtained results (for mEyeColor from Section
6.3 ).

chi2testEyeColor = Ht.ChisqTest(mEyeColor)
chi2testEyeColorFull = Ht.ChisqTest(mEyeColorFull)

(
    # chi^2 statistics
    round(chi2testEyeColorFull.stat, digits = 2),
    round(chi2testEyeColor.stat, digits = 2),

    # p-values
    round(chi2testEyeColorFull |> Ht.pvalue, digits = 7),
    round(chi2testEyeColor |> Ht.pvalue, digits = 7)
)

(64.76, 11.62,
0.0, 0.0006538)

That’s odd. All we did was to split the other category from
dfEyeColor (and therefore mEyeColor) into green and brown to create
dfEyeColorFull (and therefore mEyeColorFull) and yet we got
different 𝜒2 statistics, and different p-values. How come?

Well, because we are comparing different things (and different
populations).

Imagine that in the case of dfEyeColor (and mEyeColor) we actually
compare not the eye color, but currency of both countries. So, we
change the labels in our table. Instead of blue we got heads and
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instead of other we got tails and instead of us we got eagle²⁸⁰ and

²⁸⁰https://en.wikipedia.org/wiki/Eagle_(United_States_coin)

instead of uk we got one pound²⁸¹ . We want to test if the proportion of
heads/tails is roughly the same for both the coins.

²⁸¹https://en.wikipedia.org/wiki/One_pound_(British_coin)

Whereas in the case of dfEyeColorFull (and mEyeColorFull) imagine
we actually compare not the eye color, but three sided dice²⁸² produced

²⁸²https://www.google.com/search?sca_esv=571684704&q=three+sided+dice&
tbm=isch&source=lnms&sa=X&ved=2ahUKEwj1k-bB-uWBAxUa3AIHHWDvDoIQ
0pQJegQIDBAB&biw=1437&bih=696&dpr=1.33

in those countries. So, we change the labels in our table. Instead of
blue we got 1 and instead of green we got 2, instead of brown we got 3
(1, 2, 3 is a convention, equally well one could write on the sides of a
dice, e.g. Tom, Alice, and John). We want to test if the distribution of
1s, 2s, and 3s is roughly the same for both types of dice.

Now, it so happened that the number of dice throws was the same that
the number of coin tosses from the example above. It also happened
that the number of 1s was the same as the number of heads from the
previous example. Still, we are comparing different things (coins and
dices) and so we would not expect to get the same results from our chi
squared (𝜒2) test. And that is how it is, the test is label blind. All it
cares is the difference between the observed and expected frequencies
(counts).

Anyway, the value of 𝜒2 statistic for mEyeColorFull is 64.76 and the
probability that such a value occurred by chance approximates 0.
Therefore, it is below our customary cutoff level of 0.05, and we may
conclude that the populations differ with respect to the distribution of
eye color (as we did in Section  6.5 ).

Now, let’s get back for a moment to the label blindness issue. The test
may be label blind, but we are not. It is possible that sooner or later
you will come across a data set where splitting groups into different
categories will lead you to different conclusions, e.g. p-value from 𝜒2
test for mEyeColorPlSp for Poland and Spain would be 0.054, and for
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mEyeColorPlSpFull it would be 0.042 (so it is and it isn’t statistically
different at the same time). What should you do then?

Well, it happens. There is not much to be done here. We need to live
with that. It is like the accused and judge analogy from Section  4.7.5 .
In reality the accused is guilty or not. We don’t know the truth, the
best we can do is to examine the evidence. After that one judge may
incline to declare the accused guilty the other will give him the benefit
of doubt. There is no certainty or a great solution here (at least I don’t
know it). In such a case some people suggest to present both the
results with the author’s conclusions and let the readers decide for
themselves. Others suggest to collect a greater sample to make sure
which conclusion is right. Still, others suggest that you should plan
your experiment (its goals and the ways to achieve them) carefully
beforehand. Once you got your data you stick to the plan even if the
result is disappointing to you. So, if we had decided to compare blue
vs other and failed to establish the statistical significance we ought
stopped there. We should not go fishing for statistical significance by
splitting other to green and brown.

Test for independence
Another way to look at the chi squared (𝜒2) test is that this is a test
that allows to check the independence of the distribution of the data
between the rows and columns (see the assumption we made when
calculating the expected counts with probsUnderH0 in Section  6.3 ).
Let’s make this more concrete with the following example.

Previously we concerned ourselves with the mEyeColorFull table.

mEyeColorFull

3×2 Matrix{Int64}:
 220  161
 149   78
 130  242

The rows contain (top to bottom) eye colors: blue, green, and brown.
The columns (left to right) are for us and uk.

216



Interestingly enough, the eye color depends on the concentration of
melanin²⁸³ , a pigment that is also present in skin and hair and protects

²⁸³https://en.wikipedia.org/wiki/Melanin

us from the harmful UV radiation. So imagine that the columns
contain the data for some skin condition (left column: diseaseX, right
column: noDiseaseX). Now, we are interested to know, if people with a
certain eye color are more exposed (more vulnerable) to the disease (if
so then some preventive measures, e.g. a stronger sun screen, could be
applied by them).

Since this is a fictitious data set on which we only changed the column
labels then we already know the answer (see the reminder from
Section  6.5 below)

(
    round(chi2testEyeColorFull.stat, digits = 2),
    round(chi2testEyeColorFull |> Ht.pvalue, digits = 7)
)

(64.76, 0.0)

OK, so based on the (fictitious) data there is enough evidence to
consider that the occurrence of diseaseX isn’t independent from eye
color (𝑝 ≤ 0.05). In other words, people of some eye color get
diseaseX more often than people with some other eye color. But
which eye color (blue, green, brown) carries the greater risk? Pause for
a moment and think how to answer the question.

Well, one thing we could do is to collapse some rows (if it makes
sense), for instance we could collapse green and brown into other
category (we would end up with two eye colors: blue and other). So in
practice we would answer the same question that we did in Section
6.3 for mEyeColor (of course here we changed column labels to
diseaseX and noDiseaseX).

rowPerc = [r[1] / sum(r) * 100 for r in eachrow(mEyeColor)]
rowPerc = round.(rowPerc, digits = 2)
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(
    round(chi2testEyeColor.stat, digits = 2),
    round(chi2testEyeColor |> Ht.pvalue, digits = 7),
    rowPerc
)

(11.62, 0.0006538, [57.74, 46.58])

We see that roughly 57.74% of blue eyed people got diseaseX
compared to roughly 46.58% of people with other eye color and that
the difference is statistically significant (𝑝 ≤ 0.05). So people with
other eye color should be more careful with exposure to sun (of
course, these are just made up data).

Another option is to use a method analogous to the one we applied in
Section  5.4 and Section  5.5 . Back then we compared three groups of
continuous variables with one-way ANOVA [it controls for the overall 
𝛼 (type 1 error)]. Then we used a post-hoc tests (Student’s t-tests) to
figure out which group(s) differ(s) from the other(s). Naturally, we
could/should adjust the obtained p-values by using a multiplicity
correction (as we did in Section  5.6 ). This is exactly what we are
going to do in the upcoming exercises (see Section  6.7.5 and Section
6.7.6 ). For now take some rest and click the right arrow when you’re
ready.

Exercises - Comparisons of Categorical Data
Just like in the previous chapters here you will find some exercises that
you may want to solve to get from this chapter as much as you can
(best option). Alternatively, you may read the task descriptions and the
solutions (and try to understand them).

Exercise 1
In Section  6.3 and Section  6.5 we dealt with dfEyeColor and
dfEyeColorFull, i.e. the data sets that were already in the form of a
contingency table. Usually, this is not the case.
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Imagine that you are a researcher and you want to find out if certain
professions are associated with a greater risk of smoking cigarettes
(perhaps as a way to alleviate the stress). So you prepare a
questionnaire. People answer two questions: “Q1. What is your
profession?” and “Q2. Do you smoke?”. The answers to Q1 are placed
in one column of a spreadsheet, the answers to Q2 are placed into
another column. An exemplary data could look this way:

import Random as Rand

Rand.seed!(321)
smoker = Rand.rand(["no", "yes"], 100)
profession = Rand.rand(["Lawyer", "Priest", "Teacher"], 100)

Write a function with the following signature

function getContingencyTable(
    rowVect::Vector{String},
    colVect::Vector{String},
    )::Matrix{Int}

The function should take two arguments (observations as vectors of
strings) and return a contingency table (Matrix{Int}) with the counts
(similar to mEyeColor or mEyeColorFull). You may modify the
function slightly, e.g to return Dfs.DataFrame similar to the one
produced by FreqTables.freqtable²⁸⁴ (it doesn’t have to be exact).

²⁸⁴https://github.com/nalimilan/FreqTables.jl

Test your function with the data presented above. Make sure it works
properly also for smaller data sets, i.e.

Rand.seed!(321)
smokerSmall = Rand.rand(["no", "yes"], 10)
professionSmall = Rand.rand(["Lawyer", "Priest", "Teacher"], 10)

Here, the contingency table should contain zeros in some cells.
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Below you may find a list of functions that I found useful (you may
check them in the docs²⁸⁵ ). Of course you don’t have to use any of
them. The functions are sorted alphabetically.

²⁸⁵https://docs.julialang.org/en/v1/

• Dfs.insertcols! ( DataFrames docs²⁸⁶ )
• collect
• getCounts (from Section  4.4 )
• sort
• unique
• zip

²⁸⁶https://dataframes.juliadata.org/stable/

Exercise 2
In Section  6.3 we concluded that the populations of the us and uk
differ with respect to eye color distribution (we used data from
mEyeColor).

Still, it’s often nice to know not just the numbers themselves, but the
proportions (or percentage distribution of the data in a table).

So, here is a task for you. Write the following functions

function getColPerc(m::Matrix{Int})::Matrix{Float64}

# and

function getRowPerc(m::Matrix{Int})::Matrix{Float64}

that should work similarly to FreqTables.prop²⁸⁷ (prop(tbl2,
margins=2), and prop(tbl2, margins=1)), i.e they should return the
column and row percentage of observations, respectively.

²⁸⁷https://github.com/nalimilan/FreqTables.jl

To reduce code duplication you may want to combine them into a
single function, e.g. getPerc(m::Matrix{Int},
byRow::Bool)::Matrix{Float64} that returns row percentages when
byRow is true, and column percentages otherwise. You my also want to
round the numbers (percents) to e.g. 2 decimal points.
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In my solution I used nested for loops²⁸⁸ , but feel free to write it
whatever way you like (as long as it works fine).

²⁸⁸https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#
Nested_loops

Exercise 3
The functions we developed previously (see Section  6.8.2 ) are nice
and useful. Still, we might want to have a visual aid to help us with the
interpretation of our data.

So here is another task for you. Using CairoMakie or your favorite
plotting library write a function that accepts a data frame like
dfEyeColorFull and draws a stacked bar plot depicting column
percentages (search the documentation for barplot²⁸⁹ ).

²⁸⁹https://docs.makie.org/stable/reference/plots/barplot/

You may use the functions we developed before.

If you want, you can make your function also draw row percentages
(optional).

Exercise 4
This exercise is pretty easy and straightforward. In Section  6.4 we said
that the chi squared (𝜒2) test requires the table to fulfill a few
assumptions, e.g.:

• total number of observations to be >= 50
• the expected number of observations per a cell to be >= 5

So here is the task. Write a function with the following signature

runCategTestGetPVal(m::Matrix{Int})::Float64
# or
runCategTestGetPVal(df::Dfs.DataFrame)::Float64

The function takes a 2x2 matrix (like mEyeColor or mEyeColorSmall) or
a data frame (like dfEyeColor). Then the function tests the above
mentioned assumptions and runs Ht.ChisqTest or
Ht.FisherExactTest on its input and returns the obtained p-value.

221



Feel free to use the functionalities we developed in this chapter
(Section  6 ) and its sub-chapters.

Exercise 5
In Section  6.6 we analyzed the data in dfEyeColorFull (alternatively
mEyeColorFull) and concluded that the distribution of eye color
between the two tested countries differed. Still, we were unable to tell
which (two eye colors) distributions differ from each other.

So here is the task. Write a function that accepts a matrix (or a data
frame if you will) like mEyeColor/dfEyeColorFull (where the number
of rows and/or columns with counts is greater than 2). The function
should return a vector of all possible 2x2 matrices/data frames (I found
getUniquePairs from Section  5.8.4 to be useful here, but you may use
whatever you want).

Once you got the data structure with the data frames write another
function that runs the appropriate test (runCategTestGetPVal from
Section  6.7.4 above) on each of the matrices/data frames from the
previous paragraph and return the p-values (choose the appropriate
data structure).

In the last step write a function that applies a multiplicity correction
(see Section  5.6 ) to the obtained p-values.

Exercise 6
Too cool down let’s end this chapter with something easy but
potentially useful.

As you have learned by now in programming we often end up using
our old functions (or at least I do), although we tend to tweak them a
little to adjust them to the ever changing needs.

In this task I want you to change the drawColPerc from Section  6.8.3
(or your own solution to Section  6.7.3 ). You can name the new
function, e.g. drawColPerc2 (wow, how original). The new function
should accept among others a bigger data frame (like
dfEyeColorFull). Inside it runs runCategTestsGetPVals we
developed in Section  6.8.5 (with multiplicity correction). Then it
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should draw the stacked barplots (it draws one stacked barplot for
each data frame, the drawings should be set in one column, but in
multiple rows, so a graph under a graph). If the distribution in a data
frame is statistically significant add a stroke (strokewidth argument)
to the barplot.

Solutions - Comparisons of Categorical Data
In this sub-chapter you will find exemplary solutions to the exercises
from the previous section.

Solution to Exercise 1
An exemplary getContingencyTable could look like this (here, a
version that produces output that resembles the result of
FreqTables.freqtable):

function getContingencyTable(
    rowVect::Vector{String},
    colVect::Vector{String},
    rowLabel::String,
    colLabel::String,
    )::Dfs.DataFrame

    rowNames::Vector{String} = sort(unique(rowVect))
    colNames::Vector{String} = sort(unique(colVect))
    pairs::Vector{Tuple{String, String}} = collect(zip(rowVect,
colVect))
    pairsCounts::Dict{Tuple{String, String}, Int} = getCounts(pairs)
    labels::String = "↓" * rowLabel * "/" * colLabel * "→"
    df::Dfs.DataFrame = Dfs.DataFrame()
    columns::Dict{String, Vector{Int}} = Dict()

    for cn in colNames
        columns[cn] = [get(pairsCounts, (rn, cn), 0) for rn in rowNames]
    end

    df = Dfs.DataFrame(columns)
    Dfs.insertcols!(df, 1, labels => rowNames)

    return df
end

Here, as we often do, we start by declaring some of the helpful
variables. rowNames and colNames contain all the possible unique
groups for each input variable (rowVect and colVect). Then we get all
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the consecutive pairings that are in the data by using zip and collect
functions. For instance collect(zip(["a", "a", "b"], ["x", "y",
"x"])) will yield us the following vector of tuples: [("a", "x"),
("a", "y"), ("b", "x")]. The pairs are then sent to getCounts (from
Section  4.4 ) to find out how often a given pair occurs.

In the next step we define a variable df (for now it is empty) to hold
our final result. We saw in Section  6.3 that a data frame can be created
by sending a dictionary to the Dfs.DataFrame function. Therefore, we
declare columns (a dictionary) that will hold the count for every
column of our contingency table.

We fill the columns one by one with for cn in colNames loop. To get
a count for a particular row of a given column ((rn, cn)) we use get
function that extracts it from pairsCounts. If the key is not there (a
given combination of (rn, cn) does not exist) we return 0 as a default
value. We fill columns by using comprehensions (see Section  3.6.3 ).

Finally, we put our counts (columns) into the data frame (df). Now, we
insert a column with rowNames at position 1 (first column from left)
with Dfs.insertcols!.

All that it is left to do is to return the result.

Let’s find out how our getContingencyTable works.

smokersByProfession = getContingencyTable(
    smoker,
    profession,
    "smoker",
    "profession"
)

↓smoker/profession→ Lawyer Priest Teacher
no 14 11 18

yes 17 20 20

Table 6: Table 6: Number of smokers by profession (fictitious data).

It appears to work just fine. Let’s swap the inputs and see if we get a
consistent result.
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smokersByProfessionTransposed = getContingencyTable(
    profession,
    smoker,
    "profession",
    "smoker"
)

↓profession/smoker→ no yes
Lawyer 14 17

Priest 11 20
Teacher 18 20

Table 7: Table 7: Number of smokers by profession transposed
(fictitious data).

Looks good. And now for the small data set with possible zeros.

smokersByProfessionSmall = getContingencyTable(
    smokerSmall,
    professionSmall,
    "smoker",
    "profession"
)

↓smoker/profession→ Lawyer Priest Teacher
no 2 3 1

yes 0 1 3

Table 8: Table 8: Number of smokers by profession (small data set,
fictitious data).

Seems to be OK as well. Of course we can use this function with a data
frame, e.g. getContingencyTable(df[!, "col1"], df[!, "col2"],
"col1", "col2") or adopt it slightly to take a data frame as an input.

Solution to Exercise 2
OK, the most direct solution to the problem (for getColPerc) would be
something like
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function getColPerc(m::Matrix{Int})::Matrix{Float64}
    nRows, nCols = size(m)
    percentages:: Matrix{Float64} = zeros(nRows, nCols)
    for c in 1:nCols
        for r in 1:nRows
            percentages[r, c] = m[r, c] / sum(m[:, c])
            percentages[r, c] = round(percentages[r, c] * 100, digits =
2)
        end
    end
    return percentages
end

Here, we begin by extracting the number of rows (nRows) and columns
(nCols). We use them right away by defining percentages matrix that
will hold our final result (for now it is filled with 0s). Then we use the
classical nested for loops²⁹⁰ idiom to calculate the percentage for every

²⁹⁰https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#
Nested_loops

cell in the matrix/table (we use array indexing we met in Section
3.3.7 ). For that we divide each count (m[r, c]) by column sum
(sum(m[:, c])). Next, we multiply it by 100 (* 100) to change the
decimal to percentage. We round the percentage to two decimal points
(round and digits = 2).

The algorithm is not super efficient (we calculate sum(m[:, c])
separately for every cell) or terse (9 lines of code). Still, it is pretty
clear and for small matrices (a few/several rows/cols, that we expect in
our input) does the trick.

OK, let’s move to the getRowPerc function.

function getRowPerc(m::Matrix{Int})::Matrix{Float64}
    nRows, nCols = size(m)
    percentages:: Matrix{Float64} = zeros(nRows, nCols)
    for c in 1:nCols
        for r in 1:nRows
            percentages[r, c] = m[r, c] / sum(m[r, :])
            percentages[r, c] = round(percentages[r, c] * 100, digits =
2)
        end
    end
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    return percentages
end

Hmm, it’s almost identical to getColPerc (sum(m[:, c]) was replaced
with sum(m[r, :])). Let’s remove the code duplication and put it into
a single function.

function getPerc(m::Matrix{Int}, byRow::Bool)::Matrix{Float64}
    nRows, nCols = size(m)
    percentages:: Matrix{Float64} = zeros(nRows, nCols)
    dimSum::Int = 0 # sum in a given dimension of a matrix
    for c in 1:nCols
        for r in 1:nRows
            dimSum = (byRow ? sum(m[r, :]) : sum(m[:, c]))
            percentages[r, c] = m[r, c] / dimSum
            percentages[r, c] = round(percentages[r, c] * 100, digits =
2)
        end
    end
    return percentages
end

Here, we replaced the function specific sums with a more general
dimSum (initialized with 0). Then inside the inner for loop we decide
which sum to compute (row sum with sum(m[r, :]) and column sum
with sum(m[:, c])) with a ternary expression from Section  3.5.2 . OK,
enough of tweaking and code optimization, let’s test our new function.

mEyeColor

2×2 Matrix{Int64}:
 220  161
 279  320

And now column percentages

eyeColorColPerc = getPerc(mEyeColor, false)
eyeColorColPerc
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2×2 Matrix{Float64}:
 44.09  33.47
 55.91  66.53

So, based on the data in mEyeColor we see that in the uk (first column)
there is roughly 44.09% of people with blue eyes. Whereas in the us
(second column) there is roughly 33.47% of people with that eye color.

And now for the row percentages.

eyeColorRowPerc = getPerc(mEyeColor, true)
eyeColorRowPerc

2×2 Matrix{Float64}:
 57.74  42.26
 46.58  53.42

So, based on the data in mEyeColor we see that among the investigated
groups roughly 57.74% of blue eyed people live in the uk and 42.26% of
blue eyed people live in the us.

OK, let’s just quickly make sure our function also works fine for a
bigger table.

mEyeColorFull

3×2 Matrix{Int64}:
 220  161
 149   78
 130  242

And now column percentages.

eyeColorColPercFull = getPerc(mEyeColorFull, false)
eyeColorColPercFull

3×2 Matrix{Float64}:
 44.09  33.47
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 29.86  16.22
 26.05  50.31

So, based on the data in mEyeColor we see that in the uk (first column)
there is roughly:

• 44.09% of people with blue eyes,
• 29.86% of people with green eyes, and
• 26.05% of people with brown eyes.

For us (second column) we got:

• 33.47% of people with blue eyes,
• 16.22% of people with green eyes, and
• 50.31% of people with brown eyes.

Of course, remember that this is all fictitious data inspired by the
lecture of this Wikipedia’s page²⁹¹ .

²⁹¹https://en.wikipedia.org/wiki/Eye_color

OK, enough for the task solution. If you want to see a more terse (and
mysterious) version of getPerc then go to this chapter’s code
snippets²⁹² .

²⁹²https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch06

Solution to Exercise 3
OK, the most straightforward way to draw a stacked bar plot would be
to use Cmk.barplot with stack and color keyword arguments²⁹³ .

²⁹³https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments

The solution below is slightly different. It allows for greater control
over the output and it was created after some try and error.

import CairoMakie as Cmk

function drawColPerc(df::Dfs.DataFrame,
    dfColLabel::String,
    dfRowLabel::String,
    title::String,
    dfRowColors::Vector{String})::Cmk.Figure
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    m::Matrix{Int} = Matrix{Int}(df[:, 2:end])
    columnPerc::Matrix{Float64} = getPerc(m, false)
    nRows, nCols = size(columnPerc)
    colNames::Vector{String} = names(df)[2:end]
    rowNames::Vector{String} = df[1:end, 1]
    xs::Vector{Int} = collect(1:nCols)
    offsets::Vector{Float64} = zeros(nCols)
    curPerc::Vector{Float64} = []
    barplots = []

    fig = Cmk.Figure()
    ax1 = Cmk.Axis(fig[1, 1],
                   title=title, xlabel=dfColLabel, ylabel="% of data",
                   xticks=(xs, colNames), yticks=0:10:100)

    for r in 1:nRows
        curPerc = columnPerc[r, :]
        push!(barplots,
            Cmk.barplot!(ax1, xs, curPerc,
                         offset=offsets, color=dfRowColors[r]))
        offsets = offsets .+ curPerc
    end
    Cmk.Legend(fig[1, 2], barplots, rowNames, dfRowLabel)

    return fig
end

We begin by defining a few helpful variables. Most of them are pretty
self explanatory and rely on the constructs we met before. The three
most enigmatic are offsets, curPerc, and barplots.

offsets are the locations on Y-axis where the bottom edges of the bars
will be drawn (it is initialized with zeros). curPerc will contain heights
of the bars to be drawn. barplots will contain a vector of bar plot
objects drawn (it is necessary for adding proper legend with
Cmk.Legend). For each row in columnPerc (for r in 1:nRows) we take
the percentage of the row and put it into curPerc. Then we draw bars
(Cmk.barplot!) of that height that start (their bottom edges) at
offsets and are of a color of our choosing (dfRowColors[r]). The list
of allowed named colors can be found here²⁹⁴ . We append the drawn

²⁹⁴https://juliagraphics.github.io/Colors.jl/stable/namedcolors/

bars to the bars vector by using push!²⁹⁵ function (we met it in Section

²⁹⁵https://docs.julialang.org/en/v1/base/collections/#Base.push!
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3.4.4 ). Then we add curPerc to the offset so that the bottom edges of
the next bars will start where the top edges of the previous bars ended.

Once the for loop ended we finish by adding the appropriate legend.

OK, time to test our function

drawColPerc(dfEyeColorFull, "Country", "Eye color",
    "Eye Color distribution by country (column percentages)",
    ["lightblue1", "seagreen3", "peachpuff3"])

Figure 25:  Figure 24: Eye color distribution by country (column
percentages, fictitious data).

I don’t know about you but to me it looks pretty nice.

OK, now we could write drawRowPerc function by modifying our
drawColPerc slightly. Finally, after some try and error we could write
drawPerc function that combines both those functionalities and
reduces code duplication. Without further ado let me fast forward to
the definition of drawPerc
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function drawPerc(df::Dfs.DataFrame, byRow::Bool,
    dfColLabel::String,
    dfRowLabel::String,
    title::String,
    groupColors::Vector{String})::Cmk.Figure

    m::Matrix{Int} = Matrix{Int}(df[:, 2:end])
    dimPerc::Matrix{Float64} = getPerc(m, byRow)
    nRows, nCols = size(dimPerc)
    colNames::Vector{String} = names(df)[2:end]
    rowNames::Vector{String} = df[1:end, 1]
    ylabel::String = "% of data"
    xlabel::String = (byRow ? dfRowLabel : dfColLabel)
    xs::Vector{Int} = collect(1:nCols)
    yticks::Tuple{Vector{Int},Vector{String}} = (
        collect(0:10:100), map(string, 0:10:100)
    )
    xticks::Tuple{Vector{Int},Vector{String}} = (xs, colNames)

    if byRow
        nRows, nCols = nCols, nRows
        xs = collect(1:nCols)
        colNames, rowNames = rowNames, colNames
        dfColLabel, dfRowLabel = dfRowLabel, dfColLabel
        xlabel, ylabel = ylabel, xlabel
        yticks, xticks = (xs, colNames), yticks
    end

    offsets::Vector{Float64} = zeros(nCols)
    curPerc::Vector{Float64} = []
    barplots = []

    fig = Cmk.Figure()
    ax1 = Cmk.Axis(fig[1, 1], title=title,
                   xlabel=xlabel, ylabel=ylabel,
                   xticks=xticks, yticks=yticks)

    for r in 1:nRows
        curPerc = (byRow ? dimPerc[:, r] : dimPerc[r, :])
        push!(barplots,
            Cmk.barplot!(ax1, xs, curPerc,
                         offset=offsets, color=groupColors[r],
                         direction=(byRow ? :x : :y)))
        offsets = offsets .+ curPerc
    end
    Cmk.Legend(fig[1, 2], barplots, rowNames, dfRowLabel)

    return fig
end
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Ok, let’s see how it works.

drawPerc(dfEyeColorFull, true,
    "Country", "Eye color",
    "Eye Color distribution by country (row percentages)",
    ["red", "blue"])

Figure 26:  Figure 25: Eye color distribution by country (row
percentages, fictitious data).

Pretty, pretty, pretty.

I leave the code in drawPerc for you to decipher. Let me just explain a
few new pieces.

In Julia (like in Python) we can define two variables in one go by using
the following syntax: a, b = 1, 2 (now a = 1 and b = 2). Let’s say
that later in our program we decided that from now on a should be 2,
and b should be 1. We can swap the variables using the following one
line expression: a, b = b, a.
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Additionally, drawPerc makes use of the direction keyword
argument that accepts symbols²⁹⁶ :x or :y. It made the output slightly

²⁹⁶https://docs.julialang.org/en/v1/base/base/#Core.Symbol

more visually pleasing but also marginally complicated the code.
Anyway, direction = :y draws vertical bars (see Figure  24 ),
whereas direction = :x draws horizontal bars (see Figure  25 ).

And that’s it for this exercise.

Solution to Exercise 4
OK, let’s start by defining helper functions that we will use to test the
assumptions.

function isSumAboveCutoff(m::Matrix{Int}, cutoff::Int = 49)::Bool
    return sum(m) > cutoff
end

function getExpectedCounts(m::Matrix{Int})::Vector{Float64}
    nObs::Int = sum(m)
    cProbs::Vector{Float64} = [sum(c) / nObs for c in eachcol(m)]
    rProbs::Vector{Float64} = [sum(r) / nObs for r in eachrow(m)]
    probsUnderH0::Vector{Float64} = [
        cp * rp for cp in cProbs for rp in rProbs
        ]
    return probsUnderH0 .* nObs
end

function areAllExpectedCountsAboveCutoff(
    m::Matrix{Int}, cutoff::Float64 = 5.0)::Bool
    expectedCounts::Vector{Float64} = getExpectedCounts(m)
    return map(x -> x >= cutoff, expectedCounts) |> all
end

function areChiSq2AssumptionsOK(m::Matrix{Int})::Bool
    sumGTEQ50::Bool = isSumAboveCutoff(m)
    allExpValsGTEQ5::Bool = areAllExpectedCountsAboveCutoff(m)
    return sumGTEQ50 && allExpValsGTEQ5
end

There is not much to explain here, since all we did was to gather the
functionality we had developed in the previous chapters (e.g. in
Section  6.3 ).

And now for the tests.
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function runFisherExactTestGetPVal(m::Matrix{Int})::Float64
    @assert (size(m) == (2, 2)) "input matrix must be of size (2, 2)"
    a, c, b, d = m
    return Ht.FisherExactTest(a, b, c, d) |> Ht.pvalue
end

function runCategTestGetPVal(m::Matrix{Int})::Float64
    @assert (size(m) == (2, 2)) "input matrix must be of size (2, 2)"
    if areChiSq2AssumptionsOK(m)
        return Ht.ChisqTest(m) |> Ht.pvalue
    else
        return runFisherExactTestGetPVal(m)
    end
end

function runCategTestGetPVal(df::Dfs.DataFrame)::Float64
    @assert (size(df) == (2, 3)) "input df must be of size (2, 3)"
    return runCategTestGetPVal(Matrix{Int}(df[:, 2:3]))
end

Again, all we did here was to collect the proper functionality we had
developed in this chapter (Section  6 ) and its sub-chapters. Therefore,
I’ll refrain myself from comments. Instead let’s test our newly
developed tools.

round.(
    [
        runCategTestGetPVal(mEyeColor),
        runCategTestGetPVal(mEyeColorSmall),
        runCategTestGetPVal(dfEyeColor)
    ],
    digits = 4
)

[0.0007, 0.6373, 0.0007]

The functions appear to be working as intended, and the obtained p-
values match those from Section  6.3 and Section  6.4 .

Solution to Exercise 5
Let’s start by writing a function that will accept a data frame like
dfEyeColorFull and return all the possible 2x2 data frames (2 rows
and 2 columns with counts).
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# previously (ch05) defined function
function getUniquePairs(names::Vector{T})::Vector{Tuple{T,T}} where T
    @assert (length(names) >= 2) "the input must be of length >= 2"
    uniquePairs::Vector{Tuple{T,T}} =
        Vector{Tuple{T,T}}(undef, binomial(length(names), 2))
    currInd::Int = 1
    for i in eachindex(names)[1:(end-1)]
        for j in eachindex(names)[(i+1):end]
            uniquePairs[currInd] = (names[i], names[j])
            currInd += 1
        end
    end
    return uniquePairs
end

function get2x2Dfs(biggerDf::Dfs.DataFrame)::Vector{Dfs.DataFrame}
    nRows, nCols = size(biggerDf)
    @assert ((nRows > 2) || (nCols > 3)) "matrix of counts must be >
2x2"
    rPairs::Vector{Tuple{Int, Int}} = getUniquePairs(collect(1:nRows))
    # counts start from column 2
    cPairs::Vector{Tuple{Int, Int}} = getUniquePairs(collect(2:nCols))
    return [
        biggerDf[[r...], [1, c...]] for r in rPairs for c in cPairs
    ]
end

We begin by copying and pasting getUniquePairs from Section  5.8.4 .
We will use it in get2x2Dfs. First we get unique pairs of rows
(rPairs). Then we get unique pairs of columns (cPairs). Finally, using
nested comprehension and indexing (for reminder see Section  3.3.7
and Section  5.3.1 ) we get the vector of all possible 2x2 data frames
(actually 2x3 data frames, because first column contains row labels).
Since each element of rPairs (r) or cPairs (c) is a tuple, and indexing
must be a vector, then we convert one into the other using [r...] and
[c...] syntax (e.g. [(1, 2)...] will give us [1, 2]). In the end we
get the list of data frames as a result.

OK, let’s write a function to compute p-values (for now unadjusted)
for data frames in a vector.

function runCategTestsGetPVals(
    biggerDf::Dfs.DataFrame
    )::Tuple{Vector{Dfs.DataFrame}, Vector{Float64}}
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    overallPVal::Float64 = Ht.ChisqTest(
        Matrix{Int}(biggerDf[:, 2:end])) |> Ht.pvalue
    if (overallPVal <= 0.05)
        dfs::Vector{Dfs.DataFrame} = get2x2Dfs(biggerDf)
        pvals::Vector{Float64} = runCategTestGetPVal.(dfs)
        return (dfs, pvals)
    else
        return ([biggerDf], [overallPVal])
    end
end

The function is rather simple. First, it checks the overall p-value
(overallPVal) for the biggerDf. If it is less than or equal to our
customary cutoff level (𝛼 = 0.05) then we execute
runCategTestGetPVal on each possible data frame (dfs) using the dot
operator syntax from Section  3.6.5 . We return a tuple, its first element
is a vector of data frames, its second element is a vector of
corresponding (uncorrected) p-values. If overallPVal is greater than
the cutoff level then we place our biggerDf and its corresponding p-
value (overallPVal) into vectors, and place them into a tuple (which is
returned).

Time to test our function.

resultCategTests = runCategTestsGetPVals(dfEyeColorFull)
resultCategTests[1]

eyeCol uk us
blue 220 161

green 149 78

eyeCol uk us
blue 220 161

brown 130 242

237



eyeCol uk us
green 149 78

brown 130 242

Looking good, and now the corresponding unadjusted p-values.

resultCategTests[2]

[0.05384721765961758, 3.5949791158435336e-10, 2.761179458504292e-13]

Once we got it, adjusting the p-values should be a breeze.

import MultipleTesting as Mt

function adjustPVals(
    multCategTestsResults::Tuple{Vector{Dfs.DataFrame},
Vector{Float64}},
    multCorr::Type{<:Mt.PValueAdjustment}
    )::Tuple{Vector{Dfs.DataFrame}, Vector{Float64}}
    dfs, pvals = multCategTestsResults
    adjPVals::Vector{Float64} = Mt.adjust(pvals, multCorr())
    return (dfs, adjPVals)
end

Yep. All we did here, was to extract the vector of p-values (pvals) and
send it as an argument to Mt.adjust for correction. Let’s see how it
works (since we are using the Bonferroni method then we expect the
adjusted p-values to be 3x greater than the unadjusted ones, see
Section  5.6 ).

resultAdjustedCategTests = adjustPVals(resultCategTests, Mt.Bonferroni)
resultAdjustedCategTests[2]

[0.16154165297885273, 1.07849373475306e-9, 8.283538375512876e-13]

OK, it appears to be working just fine.

Solution to Exercise 6
OK, let’s look at an exemplary solution.
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function drawColPerc2(
    biggerDf::Dfs.DataFrame,
    dfColLabel::String,
    dfRowLabel::String,
    title::String,
    dfRowColors::Dict{String,String},
    alpha::Float64=0.05,
    adjMethod::Type{<:Mt.PValueAdjustment}=Mt.Bonferroni)::Cmk.Figure

    multCategTests::Tuple{
        Vector{Dfs.DataFrame},
        Vector{Float64}} = runCategTestsGetPVals(biggerDf)
    multCategTests = adjustPVals(multCategTests, adjMethod)
    dfs, pvals = multCategTests

    fig = Cmk.Figure(size=(800, 400 * length(dfs)))

    for i in eachindex(dfs)
        m::Matrix{Int} = Matrix{Int}(dfs[i][:, 2:end])
        columnPerc::Matrix{Float64} = getPerc(m, false)
        nRows, nCols = size(columnPerc)
        colNames::Vector{String} = names(dfs[i])[2:end]
        rowNames::Vector{String} = dfs[i][1:end, 1]
        xs::Vector{Int} = collect(1:nCols)
        offsets::Vector{Float64} = zeros(nCols)
        curPerc::Vector{Float64} = []
        barplots = []

        ax = Cmk.Axis(fig[i, 1],
            title=title, xlabel=dfColLabel, ylabel="% of data",
            xticks=(xs, colNames), yticks=0:10:100)

        for r in 1:nRows
            curPerc = columnPerc[r, :]
            push!(barplots,
                Cmk.barplot!(ax, xs, curPerc,
                    offset=offsets,
                    color=get(dfRowColors, rowNames[r], "black"),
                    strokewidth=(pvals[i] <= alpha) ? 2 : 0))
            offsets = offsets .+ curPerc
        end
        Cmk.Legend(fig[i, 2], barplots, rowNames, dfRowLabel)
    end

    return fig
end

The function definition differs slightly from the original drawColPerc.
Of note we changed the colors parameter from Vector{String} to
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Dict{String, String} (a mapping between row name in column 1
and color by which it will be represented on the graph). Of course, we
added two more parameters alpha and adjMethod.

First, we run multiple categorical tests (runCategTestsGetPVals) and
adjust the obtained p-values (adjustPVals) using functionality
developed earlier (Section  6.8.5 ). Then we, define the figure object
with a desired size (size=(widthPixels, heightPixels)) adjusted by
number of subplots in the figure (* length(dfs)).

The next step is pretty simple, basically we enclose the previously
developed code from drawColPerc in a for loop (for i in
eachindex(dfs)) that draws consecutive data frames as a stacked bar
plots in a separate rows of the figure. If a statistically significant
difference for a data frame was detected (pvals[i] <= alpha) we add
a stroke (strokewidth) to the bar plot.

Time to see how it works.

drawColPerc2(dfEyeColorFull, "Country", "Eye color", "Eye color by
country",
    Dict("blue" => "lightblue1",
        "green" => "seagreen3",
        "brown" => "peachpuff3"))
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Figure 27:  Figure 26: Eye color distribution by country (column
percentages, fictitious data). Stroke denotes statistically significant

difference (p ≤ 0.05).
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It looks quite OK + it allows us to quickly judge which eye colors
distributions differ one from another. For a more complicated layout
we should probably follow the guidelines contained in the Layout
Tutorial²⁹⁷ .

²⁹⁷https://docs.makie.org/stable/tutorials/layout-tutorial/
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Association and Prediction

OK, time to talk about association between two variables and how to
predict the value of one variable based on the value(s) of other
variable(s).

Chapter imports
Later in this chapter we are going to use the following libraries

import CairoMakie as Cmk
import CSV as Csv
import DataFrames as Dfs
import Distributions as Dsts
import GLM as Glm
import MultipleTesting as Mt
import Random as Rand
import RDatasets as RD
import Statistics as Stats

If you want to follow along you should have them installed on your
system. A reminder of how to deal (install and such) with packages
can be found here²⁹⁸ . But wait, you may prefer to use Project.toml

²⁹⁸https://docs.julialang.org/en/v1/stdlib/Pkg/

and Manifest.toml files from the code snippets for this chapter²⁹⁹ to
install the required packages. The instructions you will find here³⁰⁰ .

²⁹⁹https://github.com/b-lukaszuk/RJ_BS_eng/tree/main/code_snippets/ch07
³⁰⁰https://pkgdocs.julialang.org/v1/environments/

The imports will be placed in the code snippet when first used, but I
thought it is a good idea to put them here, after all imports should be
at the top of your file (so here they are at the top of the chapter).
Moreover, that way they will be easier to find all in one place.

If during the lecture of this chapter you find a piece of code of
unknown functionality, just go to the code snippets mentioned above
and run the code from the *.jl file. Once you have done that you can
always extract a small piece of it and test it separately (modify and
experiment with it if you wish).
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Linear relation
Imagine you are a biologist that conducts their research in the Amazon
rainforest³⁰¹ known for biodiversity and heavy rainfalls (see the name).

³⁰¹https://en.wikipedia.org/wiki/Amazon_rainforest

You divided the area into 20 equal size fields on which you measured
the volume of rain (per a unit of time) and biomass of two plants
(named creatively plantA and plantB). The results are contained in
biomass.csv file, let’s take a sneak peak at them.

import CSV as Csv
import DataFrames as Dfs

# if you are in 'code_snippets' folder, then use: "./ch07/biomass.csv"
# if you are in 'ch07' folder, then use: "./biomass.csv"
biomass = Csv.read("./code_snippets/ch07/biomass.csv", Dfs.DataFrame)
first(biomass, 5)

plantAkg rainL plantBkg
20.26 15.09 21.76
9.18 5.32 6.08

11.36 12.5 10.96
11.26 10.7 4.96
9.05 5.7 9.55

Table 12: Table 9: Effect of rainfall on plants biomass (fictitious data).

I think some plot would be helpful to get a better picture of the data
(pun intended).

import CairoMakie as Cmk

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="Effect of rainfall on biomass of plant A",
               xlabel="water [L]", ylabel="biomass [kg]")
Cmk.scatter!(ax1, biomass.rainL, biomass.plantAkg,
             markersize=25, color="skyblue",
             strokewidth=1, strokecolor="gray")
ax2 = Cmk.Axis(fig[1, 2],
               title="Effect of rainfall on biomass of plant B",
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               xlabel="water [L]", ylabel="biomass [kg]")
Cmk.scatter!(ax2, biomass.rainL, biomass.plantBkg,
             markersize=25, color="linen",
             strokewidth=1, strokecolor="black")
Cmk.linkxaxes!(ax1, ax2)
Cmk.linkyaxes!(ax1, ax2)
fig

Figure 28:  Figure 27: Effect of rainfall on a plant’s biomass.

Overall, it looks like the biomass of both plants is directly related (one
increases and the other increases) with the volume of rain. That seems
reasonable. Moreover, we can see that the points are spread along an
imaginary line (go ahead imagine it) that goes through all the points
on a graph. We can also see that plantB has a somewhat greater
spread of points (which may indicate smaller dependency on water). It
would be nice to be able to express such a relation between two
variables (here biomass and volume of rain) with a single number. It
turns out that we can. That’s the job for covariance³⁰² .

³⁰²https://en.wikipedia.org/wiki/Covariance
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Covariance
The formula for covariance resembles the one for variance that we
met in Section  4.6 (getVar function) only that it is calculated for pairs
of values (here a plant biomass and rainfall for a field), so two vectors
instead of one. Observe

import Statistics as Stats

function getCov(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    @assert length(v1) == length(v2) "v1 and v2 must be of equal
lengths"
    avg1::Float64 = Stats.mean(v1)
    avg2::Float64 = Stats.mean(v2)
    diffs1::Vector{<:Real} = v1 .- avg1
    diffs2::Vector{<:Real} = v2 .- avg2
    return sum(diffs1 .* diffs2) / (length(v1) - 1)
end

Note: To calculate the covariance you may also use
Statistics.cov³⁰³ .

³⁰³https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cov

A few points of notice. In Section  4.6 in getVar we squared the
differences (diffs), i.e. we multiplied the diffs by themselves (𝑥*𝑥 =
𝑥2). Here, we do something similar by multiplying parallel values from
both vectors of diffs (diffs1 and diffs2) by each other (𝑥*𝑦, for a
given field). Moreover, instead of taking the average (so
sum(diffs1 .* diffs2)/length(v1)) here we use the more fine
tuned statistical formula that relies on the degrees of freedom we met
in Section  5.2 (there we used getDf function on a vector, here we kind
of use getDf on the number of fields that are represented by the points
in the Figure 27).

Enough explanations, let’s see how it works. First, a few possible
associations that roughly take the following shapes on a graph: /, \, |,
and -.

rowLenBiomass, _ = size(biomass)
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(
    # assuming: getCov(xs, ys),
    # you may test the distributions with: Cmk.scatter(xs, ys)
    getCov(biomass.rainL, biomass.plantAkg), # /
    getCov(collect(1:1:rowLenBiomass), collect(rowLenBiomass:-1:1)), # \
    getCov(repeat([5], rowLenBiomass), biomass.plantAkg), # |
    getCov(biomass.rainL, repeat([5], rowLenBiomass)) # -
)

(8.721824210526316, -35.0, 0.0, 0.0)

We can see that whenever both variables (on X- and on Y-axis)
increase simultaneously (points lie alongside / imaginary line like in
Figure 27) then the covariance is positive. If one variable increases
whereas the other decreases (points lie alongside \ imaginary line)
then the covariance is negative. Whereas in the case when one
variable changes and the other is stable (points lie alongside | or -
line) the covariance is equal zero.

OK, time to compare the both plants.

covPlantA = getCov(biomass.plantAkg, biomass.rainL)
covPlantB = getCov(biomass.plantBkg, biomass.rainL)

(
    covPlantA,
    covPlantB,
)

(8.721824210526316, 9.527113684210526)

In Section  4.6 greater variance (and standard deviation) meant
greater spread of points around the mean, here the greater covariance
expresses the greater spread of the points around the imaginary trend
line (in Figure 27). But beware, you shouldn’t judge the spread of data
based on the covariance alone. To understand why let’s look at the
graph below.
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Figure 29:  Figure 28: Effect of rainfall on plants’ biomass.

Here, we got the biomass of plantA in different units (kilograms and
pounds). Logic and visual inspection of the points spread on the graph
suggest that the covariances should be the same. Or maybe not?

(
    getCov(biomass.plantAkg, biomass.rainL),
    getCov(biomass.plantAkg .* 2.205, biomass.rainL),
)

(8.721824210526316, 19.231622384210525)

The covariances suggest that the spread of the data points is like 2
times greater between the two sub-graphs in Figure  28 , but that is
clearly not the case. The problem is that the covariance is easily
inflated by the units of measurements. That is why we got an improved
metrics for association named correlation³⁰⁴ .

³⁰⁴https://en.wikipedia.org/wiki/Correlation
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Correlation
Correlation is most frequently expressed in the term of the Pearson
correlation coefficient³⁰⁵ that by itself relies on covariance we met in
the previous section. Its formula is pretty straightforward

³⁰⁵https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

# calculates the Pearson correlation coefficient
function getCor(v1::Vector{<:Real}, v2::Vector{<:Real})::Float64
    return getCov(v1, v2) / (Stats.std(v1) * Stats.std(v2))
end

getCor (generic function with 1 method)

Note: To calculate the Pearson correlation coefficient you may
also use Statistics.cor³⁰⁶ .

³⁰⁶https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor

The correlation coefficient is just the covariance (numerator) divided
by the product of two standard deviations (denominator). The lowest
absolute value (abs(getCov(v1, v2))) possible for covariance is 0. The
maximum absolute value possible for covariance is equal to
Stats.std(v1) * Stats.std(v2). Therefore, the correlation
coefficient (often abbreviated as r) takes values from 0 to 1 for positive
covariance and from 0 to −1 for negative covariance. The more tightly
our points lie on an imaginary trend line the greater is abs(corCoef).

Let’s see how it works.

biomassCors = (
    getCor(biomass.plantAkg, biomass.rainL),
    getCor(biomass.plantAkg .* 2.205, biomass.rainL), # pounds
    getCor(biomass.plantBkg, biomass.rainL),
    getCor(biomass.plantBkg .* 2.205, biomass.rainL), # pounds
)
round.(biomassCors, digits = 2)

(0.78, 0.78, 0.53, 0.53)
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Clearly, the new and improved coefficient is more useful than the old
one (covariance). Large spread of points along the imaginary line in
Figure 27 yields small correlation coefficient (closer to 0). Small spread
of points on the other hand results in a high correlation coefficient
(closer to −1 or 1). So, now we can be fairly sure of the greater strength
of association between plantA and rainfall than plantB and the
condition.

Importantly, the correlation coefficient depends not only on the scatter
of points along an imaginary line, but also on the slope of the line.
Observe:

import Random as Rand

Rand.seed!(321)

jitter = Rand.rand(-0.2:0.01:0.2, 10)
z1 = collect(1:10)
z2 = repeat([5], 10)
(
    getCor(z1 .+ jitter, z1), # / imaginary line
    getCor(z1, z2 .+ jitter) # - imaginary line
)

(0.9992378634323702, -0.3215268421510342)

Feel free to draw side by side scatter plots for the example above
(remember to link the axes). In the code snippet above the spread of
data points along the imaginary line is the same in both cases. Yet, the
correlation coefficient is much smaller in the second case. This is
because of the covariance that is present in the getCor function (in
numerator). The covariance is greater when the points change together
is a given direction. The change is smaller and non-systematic in the
second case, hence the lower correlation coefficient. You may want to
keep that in mind as it will become handy once we talk about
correlation pitfalls in Section  7.5 .

Anyway, the interpretation of the correlation coefficient differs
depending on a textbook and a field of science, but in biology it is
approximated by those cutoffs:
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• abs(r) = [0 - 0.2) - very weak correlation
• abs(r) = [0.2 - 0.4) - weak correlation
• abs(r) = [0.4 - 0.6) - moderate correlation
• abs(r) = [0.6 - 0.8) - strong correlation
• abs(r) = [0.8 - 1] - very strong correlation

Note: The Pearson’s correlation coefficient is often abbreviated as
r. Whereas, ] and ) signify closed and open interval, respectively.
So, x in range [0, 1] means 0 <= x <= 1, whereas x in range [0,
1) means 0 <= x < 1.

In general, if x and y are correlated then this may mean one of a few
things, the most obvious of which are:

• x is a cause, y is an effect
• y is a cause, x is an effect
• changes in x and y are caused by an unknown third factor(s)
• x and y are not related but it just happened that in the sample they

appear to be related by chance alone (in a small sample drawn from
a population they appear to be associated, but in the population they
are not).

We can protect ourselves (to a certain extent) against the last
contingency with our good old Student’s T-test (see Section  5.2 ). As
stated in the Wikipedia’s page³⁰⁷ :

³⁰⁷https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_
Student's_t-distribution

[…] Pearson’s correlation coefficient follows Student’s t-
distribution with degrees of freedom n − 2. Specifically, if the
underlying variables have a bivariate normal distribution the
variable

𝑡 = 𝑟
𝜎𝑟
= 𝑟*√ 𝑛−2

1−𝑟2
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has a student’s t-distribution in the null case (zero correlation)

Let’s put that knowledge to good use:

# calculates the Pearson correlation coefficient and pvalue
# assumption (not tested in the function): v1 & v2 got normal
distributions
function getCorAndPval(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Tuple{Float64, Float64}
    r::Float64 = Stats.cor(v1, v2) # or: getCor(v1, v2)
    n::Int = length(v1) # num of points
    df::Int = n - 2
    t::Float64 = r * sqrt(df / (1 - r^2)) # t-statistics
    leftTail::Float64 = Dsts.cdf(Dsts.TDist(df), t)
    pval::Float64 = (t > 0) ? (1 - leftTail) : leftTail
    return (r, pval * 2) # (* 2) two-tailed probability
end

getCorAndPval (generic function with 1 method)

The function is just a translation of the formula given above + some
calculations similar to those we did in Section  5.2 to get the p-value.
And now for our correlations.

biomassCorsPvals = (
    getCorAndPval(biomass.plantAkg, biomass.rainL),
    getCorAndPval(biomass.plantAkg .* 2.205, biomass.rainL), # pounds
    getCorAndPval(biomass.plantBkg, biomass.rainL),
    getCorAndPval(biomass.plantBkg .* 2.205, biomass.rainL), # pounds
)
biomassCorsPvals

((0.7820227869193526, 4.635013786202791e-5),
 (0.7820227869193522, 4.635013786202791e-5),
 (0.526545847035062, 0.017073389709765907),
 (0.5265458470350619, 0.017073389709765907))

We can see that both correlation coefficients are unlikely to have
occurred by chance alone (𝑝 ≤ 0.05). Therefore, we can conclude that
in each case the biomass is associated with the amount of water a
plant receives. I don’t know a formal test to compare two correlation
coefficients, but based on the rs alone it appears that the biomass of
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plantA is more tightly related to (or maybe even it relies more on) the
amount of water than the other plant (plantB).

Correlation Pitfalls
The Pearson correlation coefficient is pretty useful (especially in
connection with the Student’s t-test), but it shouldn’t be applied
thoughtlessly.

Let’s take a look at the Anscombe’s quartet³⁰⁸ .

³⁰⁸https://en.wikipedia.org/wiki/Anscombe%27s_quartet

import RDatasets as RD

anscombe = RD.dataset("datasets", "anscombe")
first(anscombe, 5)

X1 X2 X3 X4 Y1 Y2 Y3 Y4
10.0 10.0 10.0 8.0 8.04 9.14 7.46 6.58
8.0 8.0 8.0 8.0 6.95 8.14 6.77 5.76

13.0 13.0 13.0 8.0 7.58 8.74 12.74 7.71
9.0 9.0 9.0 8.0 8.81 8.77 7.11 8.84

11.0 11.0 11.0 8.0 8.33 9.26 7.81 8.47

Table 13: Table 10: DataFrame for Anscombe’s quartet

The data frame is a part of RDatasets³⁰⁹ that contains a collection of
standard data sets used with the R programming language³¹⁰ . The data

³⁰⁹https://github.com/JuliaStats/RDatasets.jl
³¹⁰https://en.wikipedia.org/wiki/R_(programming_language)

frame was carefully designed to demonstrate the perils of relying
blindly on correlation coefficients.

fig = Cmk.Figure()
i = 0
for r in 1:2 # r - row
    for c in 1:2 # c - column
        i += 1
        xname = string("X", i)
        yname = string("Y", i)
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        xs = anscombe[:, xname]
        ys = anscombe[:, yname]
        cor, pval = getCorAndPval(xs, ys)
        ax = Cmk.Axis(fig[r, c],
                      title=string("Figure ", "ABCD"[i]),
                      xlabel=xname, ylabel=yname,
                      limits=(0, 20, 0, 15))
        Cmk.scatter!(ax, xs, ys)
        Cmk.text!(ax, 9, 3, text="cor(x, y) = $(round(cor, digits=2))")
        Cmk.text!(ax, 9, 1, text="p-val = $(round(pval, digits=4))")
    end
end

fig

There’s not much to explain here. The only new part is string
function that converts its elements to strings (if they aren’t already)
and glues them together into a one long string. The rest is just plain
drawing with CairoMakie. Still, take a look at the picture below

Figure 30:  Figure 29: Anscombe’s Quartet.
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All the sub-figures from Figure  29 depict different relation types
between the X and Y variables, yet the correlations and p-values are
the same. Two points of notice here. In Figure B the points lie in a
perfect order on a curve. So, in a perfect word the correlation
coefficient should be equal to 1. Yet it is not, as it only measures the
spread of the points around an imaginary straight line. Moreover,
correlation is sensitive to outliers³¹¹ . In Figure D the X and Y variables

³¹¹https://en.wikipedia.org/wiki/Outlier

appear not to be associated at all (for X = 8, Y can take any value).
Again, in the perfect world the correlation coefficient should be equal
to 0. Still, the outlier on the far right (that in real life may have
occurred by a typographical error) pumps it up to 0.82 (or what we
could call a very strong correlation). Lesson to be learned here, don’t
trust the numbers, and whenever you can draw a scatter plot to double
check them. And remember, “All models are wrong, but some are
useful”³¹² .

³¹²https://en.wikipedia.org/wiki/All_models_are_wrong

Other pitfalls are also possible. For instance, imagine you measured
body and tail length of a certain species of mouse, here are your
results.

# if you are in 'code_snippets' folder, then use: "./ch07/
miceLengths.csv"
# if you are in 'ch07' folder, then use: "./miceLengths.csv"
miceLengths = Csv.read(
    "./code_snippets/ch07/miceLengths.csv",
    Dfs.DataFrame)
first(miceLengths, 5)
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bodyCm tailCm sex
11.3 2.55 f

11.18 2.22 f
9.42 2.54 f
9.21 2.2 f
9.97 2.63 f

Table 14: Table 11: Body lengths of a certain mouse species (fictitious
data).

You are interested to know if the tail length is associated with the
body length of the animals.

getCorAndPval(miceLengths.bodyCm, miceLengths.tailCm)

(0.8899347709623199, 1.5005298337200657e-7)

Clearly it is and even very strongly. Or is it? Well, let’s take a look

256



Figure 31:  Figure 30: Mice body length vs. tail length.

It turns out that we have two clusters of points. In both of them the
points seem to be randomly scattered. This could be confirmed by
testing correlation coefficients for the clusters separately.

isFemale(value) = value == "f"
isMale(value) = value == "m"

# fml - female mice lengths
# mml - male mice lengths
fml = miceLengths[isFemale.(miceLengths.sex), :] # choose only females
mml = miceLengths[isMale.(miceLengths.sex), :] # choose only males

(
    getCorAndPval(fml.bodyCm, fml.tailCm),
    getCorAndPval(mml.bodyCm, mml.tailCm)
)

((-0.1593819718041706, 0.6821046994037891),
 (-0.02632446813765734, 0.9387606491398499))
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Note: The above code snippet uses a single expression functions³¹³ 
in the form functionName(argument) = returnedValue and
Boolean indexing (isFemale.(miceLengths.sex) and isMale.
(miceLengths.sex)) that was discussed briefly in Section  3.3.6
and Section  3.3.7 .

³¹³https://en.wikibooks.org/wiki/Introducing_Julia/Functions#Single_expression_
functions

Alternatively, you could read the documentation for the functionality
built into DataFrames.jl to obtain the desired insight. Doing so takes
time, effort, and causes irritation at first (trust me, I know). Still, there
are no shortcuts to any place worth going. So, you may decide to use
Dfs.groupby³¹⁴ and Dfs.combine³¹⁵ to get a similar result.

³¹⁴https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.groupby
³¹⁵https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.combine

# gDf - grouped data frame
Dfs.groupby(miceLengths, :sex) |>
    gDf -> Dfs.combine(gDf, [:tailCm, :bodyCm] => Stats.cor => :r)

sex r
f −0.1593819718041706

m −0.02632446813765729

Table 15: Table 12: Pearson correlation coefficients for miceLengths
data frame.

Note: You could replace Stats.cor with getCorAndPval in the
snippet above. This should work if you changed the signature of
the function from getCorAndPval(v1::Vector{<:Real},
v2::Vector{<:Real}) to
getCorAndPval(v1::AbstractVector{<:Real},
v2::Abstractvector{<:Real}) first. A more comprehensive
DataFrames tutorial can be found, e.g.  here³¹⁶ (if you don’t know
what to do with *.ipynb files then you may just click on any of
them to see its content in a web browser).
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³¹⁶https://github.com/bkamins/Julia-DataFrames-Tutorial/

Anyway, the Pearson correlation coefficients are small and not
statistically significant (p > 0.05). But since the two clusters of points
lie on the opposite corners of the graph, then the overall correlation
measures their spread alongside the imaginary dashed line in Figure
30 . This inflates the value of the coefficient (compare with the
explanation for z1, z2 and jitter in Section  7.4 ). Therefore, it is
always good to inspect a graph (scatter plot) to see if there are any
clusters of points. The clusters are usually a result of some grouping
present in the data (either different experimental groups/treatments or
due to some natural grouping). Sometimes we may be unaware of the
groups in our data set. Still, if we do know about them, then it is a
good idea to inspect the overall correlation and the correlation
coefficient for each of the groups separately.

As the last example let’s take a look at this data frame.

# if you are in 'code_snippets' folder, then use: "./ch07/candyBars.csv"
# if you are in 'ch07' folder, then use: "./candyBars.csv"
candyBars = Csv.read(
    "./code_snippets/ch07/candyBars.csv",
    Dfs.DataFrame)
first(candyBars, 5)

total carb fat
44.49 30.23 9.67
48.39 29.31 12.48
49.83 30.95 10.58
40.51 25.22 9.89
44.51 29.45 10.15

Table 16: Table 13: Candy bar composition [g] (fictitious data).

Here, we got a data set on composition of different chocolate bars. You
are interested to see if the carbohydrate (carb) content in bars is
associated with their fat mass.
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getCorAndPval(candyBars.carb, candyBars.fat)

(0.12176486958519653, 0.7375535843598793)

And it appears it is not. OK, no big deal, and what about carb and
total mass of a candy bar?

getCorAndPval(candyBars.carb, candyBars.total)

(0.822779226943004, 0.0034638410860259317)

Now we got it. It’s big (r > 0.8) and it’s real (𝑝 ≤ 0.05). But did it really
make sense to test that?

If we got a random variable aa then it is going to be perfectly
correlated with itself.

Rand.seed!(321)
aa = Rand.rand(Dsts.Normal(100, 15), 10)

getCorAndPval(aa, aa)

(1.0, 0.0)

On the other hand it shouldn’t be correlated with another random
variable bb.

bb = Rand.rand(Dsts.Normal(100, 15), 10)

getCorAndPval(aa, bb)

(0.19399997195558746, 0.5912393958185727)

Now, if we add the two variables together we will get the total (cc),
that will be correlated with both aa and bb.

cc = aa .+ bb
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(
    getCorAndPval(aa, cc),
    getCorAndPval(bb, cc)
)

((0.7813386818990972, 0.007608814877251513),
 (0.763829856046036, 0.010120085355359132))

This is because while correlating aa with cc we are partially
correlating aa with itself (aa .+ bb). In general, the greater portion of
cc our aa makes the greater the correlation coefficient. So, although
possible, it makes little logical sense to compare a part of something
with its total. Therefore, in reality running
getCorAndPval(candyBars.carb, candyBars.total) makes no point
despite the interesting result it seems to produce.

Simple Linear Regression
We began Section  7.2 with describing the relation between the volume
of water and biomass of two plants of amazon rain forest. Let’s revisit
the problem.

biomass
first(biomass, 5)

plantAkg rainL plantBkg
20.26 15.09 21.76
9.18 5.32 6.08

11.36 12.5 10.96
11.26 10.7 4.96
9.05 5.7 9.55

Table 17: Effect of rainfall on plants biomass (fictitious data).
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Figure 32:  Effect of rainfall on plants’ biomass. Revisited.

Previously, we said that the points are scattered around an imaginary
line that goes through their center. Now, we could draw that line at a
rough guess using a pen and a piece of paper (or a graphics editor).
Based on the line we could make a prediction of the values on Y-axis
based on the values on the X-axis. The variable placed on the X-axis is
called independent (the rain does not depend on a plant, it falls or not),
predictor or explanatory variable. The variable placed on the Y-axis is
called dependent (the plant depends on rain) or outcome variable. The
problem with drawing the line by hand is that it wouldn’t be
reproducible, a line drawn by the same person would differ slightly
from draw to draw. The same is true if a few different people have
undertaken this task. Luckily, we got the simple linear regression³¹⁷ , a

³¹⁷https://en.wikipedia.org/wiki/Simple_linear_regression

method that allows us to draw the same line every single time based
on a simple mathematical formula that takes the form:

𝑦 = 𝑎 + 𝑏*𝑥, where:
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• y - predicted value of y
• a - intercept (a point on Y-axis where the imaginary line crosses it at

x = 0)
• b - slope (a value by which y increases/decreases when x changes by

one unit)
• x - the value of x for which we want to estimate/predict the value of

y

The slope (b) is fairly easy to calculate with Julia

function getSlope(xs::Vector{<:Real}, ys::Vector{<:Real})::Float64
    avgXs::Float64 = Stats.mean(xs)
    avgYs::Float64 = Stats.mean(ys)
    diffsXs::Vector{<:Real} = xs .- avgXs
    diffsYs::Vector{<:Real} = ys .- avgYs
    return sum(diffsXs .* diffsYs) / sum(diffsXs .^ 2)
end

getSlope (generic function with 1 method)

The function resembles the formula for the covariance that we met in
Section  7.3 . The difference is that there we divided sum(diffs1 .*
diffs2) (here we called it sum(diffsXs .* diffsYs)) by the degrees
of freedom (length(v1) - 1) and here we divide it by
sum(diffsXs .^ 2). We might not have come up with the formula
ourselves, still, it makes sense given that we are looking for the value
by which y changes when x changes by one unit.

Once we got it, we may proceed to calculate the intercept (a) like so

function getIntercept(xs::Vector{<:Real}, ys::Vector{<:Real})::Float64
    return Stats.mean(ys) - getSlope(xs, ys) * Stats.mean(xs)
end

getIntercept (generic function with 1 method)

And now the results.
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# be careful, unlike in getCor or getCov, here the order of variables
# in parameters influences the result
plantAIntercept = getIntercept(biomass.rainL, biomass.plantAkg)
plantASlope = getSlope(biomass.rainL, biomass.plantAkg)
plantBIntercept = getIntercept(biomass.rainL, biomass.plantBkg)
plantBSlope = getSlope(biomass.rainL, biomass.plantBkg)

round.([plantASlope, plantBSlope], digits = 2)

[1.04, 1.14]

The intercepts are not our primary interest (we will explain why in a
moment or two). We are more concerned with the slopes. Based on the
slopes we can say that on average each additional liter or water
(rainL) translates into 1.04 [kg] more biomass for plantA and 1.14 [kg]
more biomass for plantB. Although, based on the correlation
coefficients from Section  7.4 we know that the estimate for plantB is
less precise. This is because the smaller correlation coefficient means a
greater spread of the points along the line as can be seen in the figure
below.

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               title="Effect of rainfall on biomass of plant A",
               xlabel="water [L]", ylabel="biomass [kg]")
Cmk.scatter!(ax1, biomass.rainL, biomass.plantAkg,
             markersize=25, color="skyblue",
             strokewidth=1, strokecolor="gray")
ax2 = Cmk.Axis(fig[1, 2],
               title="Effect of rainfall on biomass of plant B",
               xlabel="water [L]", ylabel="biomass [kg]")
Cmk.scatter!(ax2, biomass.rainL, biomass.plantBkg,
             markersize=25, color="linen",
             strokewidth=1, strokecolor="black")
Cmk.ablines!(ax1, plantAIntercept, plantASlope,
             linestyle=:dash, color="gray")
Cmk.ablines!(ax2, plantBIntercept, plantBSlope,
             linestyle=:dash, color="gray")
Cmk.linkxaxes!(ax1, ax2)
Cmk.linkyaxes!(ax1, ax2)
fig

264



Figure 33:  Figure 31: Effect of rainfall on plants’ biomass with trend
lines superimposed.

The trend line is placed more or less where we would have placed it at
a rough guess, so it seems we got our functions right.

Now we can either use the graph (Figure  31 ) and read the expected
value of the variable on the Y-axis based on a value on the X-axis
(using a dashed line). Alternatively, we can write a formula based on 
𝑦 = 𝑎 + 𝑏*𝑥 we mentioned before to get that estimate.

function getPrecictedY(
    x::Float64, intercept::Float64, slope::Float64)::Float64
    return intercept + slope * x
end

round.(
    getPrecictedY.([6.0, 10, 12], plantAIntercept, plantASlope),
    digits = 2)

[8.4, 12.57, 14.65]
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It appears to work as expected (to confirm it read from Figure  31
values on Y-axis for the following values on X-axis: [6.0, 10, 12] using
the dashed line for plantA).

OK, and now imagine you intend to introduce plantA into a botanic
garden³¹⁸ and you want it to grow well and fast. The function

³¹⁸https://en.wikipedia.org/wiki/Botanical_garden

getPrecictedY tells us that if you pour 35 [L] of water to a field with
plantA then on average you should get 42 [kg] of the biomass.
Unfortunately after you applied the treatment it turned out the
biomass actually dropped to 10 [kg] from the field. What happened?
Reality. Most likely you (almost) drowned your plant. Lesson to be
learned here. It is unsafe to use a model to make predictions beyond
the data range on which it was trained. Ultimately, “All models are
wrong, but some are useful”³¹⁹ .

³¹⁹https://en.wikipedia.org/wiki/All_models_are_wrong

The above is the reason why in most cases we aren’t interested in the
value of the intercept. The intercept is the value on the Y-axis when X
is equal to 0, it is necessary for our model to work, but most likely it
isn’t very informative (in our case a plant that receives no water
simply dies).

So what is regression good for if it only enables us to make a
prediction within the range on which it was trained? Well, if you ever
underwent spirometry³²⁰ then you used regression in practice (or at

³²⁰https://en.wikipedia.org/wiki/Spirometry

least benefited from it). The functional examination of the respiratory
system goes as follows. First, you enter your data: name, sex, height,
weight, age, etc. Then you breathe (in a manner recommended by a
technician) through a mouthpiece connected to an analyzer. Finally,
you compare your results with the ones you should have obtained. If,
let’s say your vital capacity³²¹ is equal to 5.1 [L] and should be equal to

³²¹https://en.wikipedia.org/wiki/Vital_capacity

5 [L] then it is a good sign. However, if the obtained value is equal to 4
[L] when it should be 5 [L] (4/5 = 0.8 = 80% of the norm) then you
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should consult your physician. But where does the reference value
come from?

One way to get it would be to rely on a large database, of let’s say
100-200 million healthy individuals (a data frame with 100-200 million
rows and 5-6 columns for age, gender, height, etc. that is stored on a
hard drive). Then all you have to do is to find a person (or people)
whose data match yours exactly. Then you can take their vital capacity
(or their a mean if there is more than one person that matches your
features) as a reference point for yours. But this would be a great
burden. For once you would have to collect data for a lot of individuals
to be pretty sure that an exact combination of a given set of features
occurs (hence the 100-200 million mentioned above). The other
problem is that such a data frame would occupy a lot of disk space and
would be slow to search through. A better solution is regression (most
likely multiple linear regression that we will cover in Section  7.7 ). In
that case you collect a smaller sample of let’s say 10’000 healthy
individuals. You train your regression model. And store it together
with the getPrecictedY function (where Y could be the discussed vital
capacity). Now, you can easily and quickly calculate the reference
value for a patient even if the exact set of features (values of predictor
variables) was not in your training data set (still, you can be fairly sure
that the values of the features of the patient are in the range of the
training data set).

Anyway, in real life whenever you want to fit a regression line in Julia
you should probably use GLM.jl³²² package. In our case an exemplary
output for plantA looks as follows.

³²²https://juliastats.org/GLM.jl/stable/

import GLM as Glm

mod1 = Glm.lm(Glm.@formula(plantAkg ~ rainL), biomass)
mod1

plantAkg ~ 1 + rainL
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Coefficients:
──────────────────────────────────────────────────────────────────────
               Coef.  Std. Error     t  Pr(>|t|)  Lower 95%  Upper 95%
──────────────────────────────────────────────────────────────────────
(Intercept)  2.14751    2.04177   1.05    0.3068  -2.14208     6.43711
rainL        1.04218    0.195771  5.32    <1e-04   0.630877    1.45347
──────────────────────────────────────────────────────────────────────

We begin with Glm.lm(formula, dataFrame) (lm stands for linear
model). Next, we specify our relationship (Glm.@formula) in the form Y
~ X, where Y is the dependent (outcome) variable, ~ is explained by,
and X is the independent (explanatory) variable. This fits our model
(mod1) to the data and yields quite some output.

The Coef. column contains the values of the intercept (previously
estimated with getIntercept) and slope (before we used getSlope for
that). It is followed by the Std. Error of the estimation (similar to the
sem from Section  5.2 ). Then, just like in the case of the correlation
(Section  7.4 ), some clever mathematical tweaking allows us to obtain
a t-statistic for the Coef.s and p-values for them. The p-values tell us if
the coefficients are really different from 0 (𝐻0: a Coeff. is equal to 0)
or estimate the probability that such a big value (or bigger) happened
by chance alone (assuming that 𝐻0 is true). Finally, we end up with
95% confidence interval (similar to the one discussed in Section  5.2.1 )
that (oversimplifying stuff) tells us, with a degree of certainty, within
what limits the true value of the coefficient in the population is.

We can use GLM to make our predictions as well.

round.(
    Glm.predict(mod1, Dfs.DataFrame(Dict("rainL" => [6, 10, 12]))),
    digits = 2
)

[8.4, 12.57, 14.65]

For that to work we feed Glm.predict with our model (mod1) and a
DataFrame containing a column rainL that was used as a predictor in
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our model and voila, the results match those returned by
getPrecictedY somewhat before in this section.

We can also get the general impression of how imprecise our
prediction is by using the residuals (differences between the predicted
and actual value on the Y-axis). Like so

# an average estimation error in prediction
# (based on abs differences)
function getAvgEstimError(
    lm::Glm.StatsModels.TableRegressionModel)::Float64
    return abs.(Glm.residuals(lm)) |> Stats.mean
end

getAvgEstimError(mod1)

2.075254994044967

So, on average our model miscalculates the value on the Y-axis
(plantAkg) by 2 units (here kilograms). Of course, this is a slightly
optimistic view, since we expect that on a new, previously unseen data
set, the prediction error will be greater.

Moreover, the package allows us to calculate other useful stuff, like the
coefficient of determination³²³ that tells us how much change in the

³²³https://en.wikipedia.org/wiki/Coefficient_of_determination

variability on Y-axis is explained by our model (our explanatory
variable(s)).

(
    Glm.r2(mod1),
    Stats.cor(biomass.rainL, biomass.plantAkg) ^ 2
)

(0.6115596392611107, 0.6115596392611111)

The coefficient of determination is called 𝑟2 (r squared) and in this case
(simple linear regression) it is equal to the Pearson’s correlation
coefficient (denoted as r) times itself. As we can see our model
explains roughly 61% of variability in plantAkg biomass.
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Multiple Linear Regression
Multiple linear regression is a linear regression with more than one
predictor variable. Take a look at the Icecream³²⁴ data frame.

³²⁴https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html

ice = RD.dataset("Ecdat", "Icecream")
first(ice, 5)

Cons Income Price Temp
0.386 78.0 0.27 41.0
0.374 79.0 0.282 56.0
0.393 81.0 0.277 63.0
0.425 80.0 0.28 68.0
0.406 76.0 0.272 69.0

Table 18: Table 14: Icecream consumption data.

We got 4 columns altogether (more detail in the link above):

• Cons - consumption of ice cream (pints),
• Income - average family income (USD),
• Price - price of ice cream (USD),
• Temp - temperature (Fahrenheit)

Imagine you are an ice cream truck owner and are interested to know
which factors influence (and in what way) the consumption (Cons) of
ice-cream by your customers. Let’s start by building a model with all
the possible explanatory variables.

iceMod1 = Glm.lm(Glm.@formula(Cons ~ Income + Price + Temp), ice)
iceMod1

───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)   0.1973      0.2702   0.73    0.4718    -0.3581     0.7528
Income        0.0033      0.0012   2.82    0.0090     0.0009     0.0057
Price        -1.0444      0.8344  -1.25    0.2218    -2.7595     0.6706
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Temp          0.0035      0.0004   7.76    <1e-99     0.0025     0.0044
───────────────────────────────────────────────────────────────────────

Right away we can see that the price of ice-cream negatively affects
(Coef. = −1.044) the volume of ice cream consumed (the more
expensive the ice cream is the less people eat it, 1.044 pint less for
every additional USD of price). The relationship is in line with our
intuition. However, there is not enough evidence (p > 0.05) that the
real influence of Price on consumption isn’t 0 (so no influence).
Therefore, you wonder should you perhaps remove the variable Price
from the model like so

iceMod2 = Glm.lm(Glm.@formula(Cons ~ Income + Temp), ice)
iceMod2

───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)  -0.1132      0.1083  -1.05    0.3051    -0.3354     0.109
Income        0.0035      0.0012   3.02    0.0055     0.0011     0.0059
Temp          0.0035      0.0004   7.96    <1e-99     0.0026     0.0045
───────────────────────────────────────────────────────────────────────

Now, we got Income and Temp in our model, both of which are
statistically significant. The values of Coef.s for Income and Temp
somewhat changed between the models, but such changes (and even
greater) are to be expected. Still, we would like to know if our new
iceMod2 is really better than iceMod1 that we came up with before.

In our first try to solve the problem we could resort to the coefficient
of determination (𝑟2) that we met in Section  7.6 . Intuition tells us that
a better model should have a bigger 𝑟2.

round.([Glm.r2(iceMod1), Glm.r2(iceMod2)],
    digits = 3)

[0.719, 0.702]
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Hmm, 𝑟2 is bigger for iceMod1 than iceMod2. However, there are two
problems with it: 1) the difference between the coefficients is quite
small, and 2) 𝑟2 gets easily inflated by any additional variable in the
model. And I mean any, if you add, let’s say 10 random variables to the
ice data frame and put them into a model the coefficient of
determination will go up even though this makes no sense (we know
their real influence is 0). That is why we got an improved metrics
called the adjusted coefficient of determination. This parameter (adj. 
𝑟2) penalizes for every additional variable added to our model.
Therefore the ‘noise’ variables will lower the adjusted 𝑟2 whereas only
truly impactful ones will be able to raise it.

round.([Glm.adjr2(iceMod1), Glm.adjr2(iceMod2)],
    digits = 3)

[0.687, 0.68]

iceMod1 still explains more variability in Cons (ice cream
consumption), but the magnitude of the difference dropped. This
makes our decision even harder. Luckily, Glm has ftest function to
help us determine if one model is significantly better than the other.

Glm.ftest(iceMod1.model, iceMod2.model)

F-test: 2 models fitted on 30 observations
───────────────────────────────────────────────────────────────
     DOF  ΔDOF     SSR    ΔSSR      R²      ΔR²      F*   p(>F)
───────────────────────────────────────────────────────────────
[1]    5        0.0353          0.7190
[2]    4    -1  0.0374  0.0021  0.7021  -0.0169  1.5669  0.2218
───────────────────────────────────────────────────────────────

The table contains two rows:

• [1] - first model from the left (in Glm.ftest argument list)
• [2] - second model from the left (in Glm.ftest argument list)

and a few columns:
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• DOF - degrees of freedom (more elements in formula, bigger DOF)
• ΔDOF - DOF[2] - DOF[1]
• SSR - residual sum of squares (the smaller the better)
• ΔSSR - SSR[2] - SSR[1]
• R2 - coefficient of determination (the bigger the better)
• ΔR2 - R2[2] - R2[1]
• F* - F-Statistic (similar to the one we met in Section  5.4 )
• p(>F) - p-value that you obtain F-statistic greater than the one in the

previous column by chance alone (assuming both models are equally
good)

Based on the test we see that none of the models is clearly better than
the other (p > 0.05). Therefore, in line with Occam’s razor³²⁵ principle

³²⁵https://en.wikipedia.org/wiki/Occam%27s_razor

(when two equally good explanations exist, choose the simpler one)
we can safely pick iceMod2 as our final model.

What we did here was the construction of a so called minimal
adequate model (the smallest model that explains the greatest amount
of variance in the dependent/outcome variable). We did this using top
to bottom approach. We started with a ‘full’ model. Then, we followed
by removing explanatory variables (one by one) that do not contribute
to the model (we start from the highest p-value above 0.05) until only
meaningful explanatory variables remain. The removal of the variables
reflects our common sense, because usually we (or others that will use
our model) do not want to spend time/money/energy on collecting
data that are of no use to us.

OK, let’s inspect our minimal adequate model again.

iceMod2

───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)  -0.1132      0.1083  -1.05    0.3051    -0.3354     0.109
Income        0.0035      0.0012   3.02    0.0055     0.0011     0.0059
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Temp          0.0035      0.0004   7.96    <1e-99     0.0026     0.0045
───────────────────────────────────────────────────────────────────────

We can see that for every extra dollar of Income our customers
consume 0.003 pint (~1.47 mL) of ice cream more. Roughly the same
change is produced by each additional grade (in Fahrenheit) of
temperature. So, a simultaneous increase in Income by 1 USD and Temp
by 1 unit translates into roughly 0.003 + 0.003 = 0.006 pint (~2.94 mL)
greater consumption of ice cream per person. Now, (remember you
were to imagine you are an ice cream truck owner) you could use the
model to make predictions (with Glm.predict as we did in Section
7.6 ) to your benefit (e.g. by preparing enough product for your
customers on a hot day).

So the time passes by and one sunny day when you open a bottle of
beer a drunk genie pops out of it. To compensate you for the lost beer
he offers to fulfill one wish (shouldn’t there be three?). He won’t
shower you with cash right away since you will not be able to explain
it to the tax office. Instead, he will give you the ability to control either
Income or Temp variable at will. That way you will get your money and
none is the wiser. Which one do you choose, answer quickly, before
the genie changes his mind.

Hmm, now that’s a dilemma, but judging by the coefficients above it
seems it doesn’t make much of a difference (both Coef.s are roughly
equal to 0.0035). Or does it? Well, the Coef.s are similar, but we are
comparing incomparable, i.e. dollars (Income) with degrees Fahrenheit
(Temp) and their influence on Cons. We may however, standardize the
coefficients³²⁶ to overcome the problem.

³²⁶https://en.wikipedia.org/wiki/Standardized_coefficient

# fn from ch04
# how many std. devs is a value above or below the mean
function getZScore(value::Real, mean::Real, sd::Real)::Float64
    return (value - mean)/sd
end

# adding new columns to the data frame
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ice.ConsStand = getZScore.(
    ice.Cons, Stats.mean(ice.Cons), Stats.std(ice.Cons))
ice.IncomeStand = getZScore.(
    ice.Income, Stats.mean(ice.Income), Stats.std(ice.Income))
ice.TempStand = getZScore.(
    ice.Temp, Stats.mean(ice.Temp), Stats.std(ice.Temp))

iceMod2Stand = Glm.lm(
    Glm.@formula(ConsStand ~ IncomeStand + TempStand), ice)
iceMod2Stand

──────────────────────────────────────────────────────────────────────
              Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
──────────────────────────────────────────────────────────────────────
(Intercept)  -0.0         0.103  -0.00    1.0000     -0.212      0.212
IncomeStand   0.335       0.111   3.02    0.0060      0.107      0.563
TempStand     0.884       0.111   7.96    <1e-99      0.657      1.112
──────────────────────────────────────────────────────────────────────

When expressed on the same scale (using getZScore function we met
in Section  4.6.2 ) it becomes clear that the Temp (Coef. ~0.884) is a
much more influential factor with respect to ice cream consumption
(Cons) than Income (Coef. ~0.335). Therefore, we can be pretty sure
that modifying the temperature by 1 standard deviation (which should
not attract much attention) will bring you more money than modifying
customers’ income by 1 standard deviation. Thanks genie.

Let’s look at another example of regression to get a better feel of it and
discuss categorical variables and an interaction term in the model. We
will operate on agefat³²⁷ data frame.

³²⁷https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/agefat.html

agefat = RD.dataset("HSAUR", "agefat")
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Age Fat Sex
24 15.5 male
37 20.9 male
41 18.6 male
60 28.0 male
31 34.7 female

Table 19: Table 15: Total body composition.

Here we are interested to predict body fat percentage (Fat) from the
other two variables. Let’s get down to business.

agefatM1 = Glm.lm(Glm.@formula(Fat ~ Age + Sex), agefat)
agefatM1

────────────────────────────────────────────────────────────────────────
                Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
────────────────────────────────────────────────────────────────────────
(Intercept)   19.6479      4.1078   4.78    0.0001    11.1288    28.1669
Age            0.2656      0.0795   3.34    0.0030     0.1006     0.4305
Sex: male    -10.5489      2.0914  -5.04    <1e-99   -14.8862    -6.2116
────────────────────────────────────────────────────────────────────────

It appears that the older a person is the more fat it has (+0.27% of body
fat per 1 extra year of age). Moreover, male subjects got smaller
percentage of body fat (on average by 10.5%) than female individuals
(this is to be expected: see here³²⁸ ). In the case of categorical variables

³²⁸https://en.wikipedia.org/wiki/Body_fat_percentage

the reference group is the one that comes first in the alphabet (here
female is before male). The internals of the model assign 0 to the
reference group and 1 to the other group. This yields us the formula: 
𝑦 = 𝑎 + 𝑏*𝑥 + 𝑐*𝑧 or 𝐹𝑎𝑡 = 𝑎 + 𝑏*𝐴𝑔𝑒 + 𝑐*𝑆𝑒𝑥, where Sex is 0 for
female and 1 for male. As before we can use this formula for
prediction (either write a new getPredictedY function on your own or
use Glm.predict we met before).

We may also want to fit a model with an interaction term (+ Age&Sex)
to see if we gain some additional precision in our predictions.
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# or shortcut: Glm.@formula(Fat ~ Age * Sex)
agefatM2 = Glm.lm(Glm.@formula(Fat ~ Age + Sex + Age&Sex), agefat)
agefatM2

──────────────────────────────────────────────────────────────────────
                  Coef.  Std. Err.      t  Pr(>|t|)  Low. 95%  Up. 95%
──────────────────────────────────────────────────────────────────────
(Intercept)       25.67       5.33   4.82    <1e-99     14.59    36.75
Age                0.14       0.11   1.36    0.1900     -0.08     0.36
Sex: male        -21.76       6.96  -3.13    0.0100    -36.24    -7.28
Age & Sex: male    0.26       0.15   1.68    0.1100     -0.06     0.58
──────────────────────────────────────────────────────────────────────

Here, we do not have enough evidence that the interaction term (Age
& Sex: male) matters (p > 0.05). Still, let’s explain what is this
interaction in case you ever find one that is important. For that, take a
look at the graph below.

Figure 34:  Figure 32: Body fat percentage vs. Age and Sex

As you can see the model without interaction fits two regression lines
(one for each Sex) with different intercepts, but the same slopes. On
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the other hand, the model with interaction fits two regression lines
(one for each Sex) with different intercepts and different slopes. Since
the coefficient (Coef.) for the interaction term (Age & Sex: male) is
positive, this means that the slope for Sex: male is more steep (more
positive). This would suggest that males tend to accumulate fat at a
faster rate as they age.

So, when to use an interaction term in your model? The advice I heard
was that in general, you should construct simple models and only use
an interaction term when there are some good reasons for it. For
instance, in the discussed case (agefat data frame), we might wanted
to answer the research question: Does the accretion of body fat occurs
faster in one of the genders as people age?

Exercises - Association and Prediction
Just like in the previous chapters here you will find some exercises that
you may want to solve to get from this chapter as much as you can
(best option). Alternatively, you may read the task descriptions and the
solutions (and try to understand them).

Exercise 1
The RDatasets package mentioned in Section  7.5 contains a lot of
interesting data. For instance the Animals³²⁹ data frame.

³²⁹https://vincentarelbundock.github.io/Rdatasets/doc/MASS/Animals.html

animals = RD.dataset("MASS", "Animals")
first(animals, 5)
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Species Body Brain
Mountain beaver 1.35 8.1

Cow 465.0 423.0
Grey wolf 36.33 119.5

Goat 27.66 115.0
Guinea pig 1.04 5.5

Table 20: Table 16: DataFrame for brain and body weights of 28 animal
species.

Since this chapter is about association then we are interested to know
if body [kg] and brain weights [kg] of the animals are correlated. Let’s
take a sneak peak at the data points.

Figure 35:  Figure 33: Body and brain weight of 28 animal species.

Hmm, at first sight the data looks like a little mess. Most likely because
of the large range of data on X- and Y-axis. Moreover, the fact that
some animals got large body mass with relatively small brain weight
doesn’t help either. Still, my impression is that in general (except for
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the first three points from the right) greater body weight is associated
with a greater brain weight. However, it is quite hard to tell for sure as
the points on the left are so close to each other on the scale of X-axis.
So, let’s put that to the test.

getCorAndPval(animals.Body, animals.Brain)

(-0.005341162561251125, 0.9784802067532018)

The Pearson’s correlation coefficient is not able to discern the points
and confirm that either. Nevertheless, let’s narrow our ranges by
taking logarithms (with log10 function) of the data and look at the
scatter plot again.

Figure 36:  Figure 34: Body (log10) and brain (log10) weight of 28
animal species.

The impression we get is quite different than before. The points are
much better separated. The three outliers remain, but they are much
closer to the imaginary trend line. Now we would like to express that
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relationship. One way to do it is with Spearman’s rank correlation
coefficient³³⁰ . As the name implies instead of correlating the numbers
themselves it correlates their ranks.

³³⁰https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Note: It might be a good idea to examine the three outliers and
see do they have anything in common. If so, we might want to
determine the relationship between X- and Y- variable (even on
the original, non-log10 scale) separately for the outliers and the
remaining animals. Here, the three outliers are dinosaurs,
whereas rest of the animals are mammals. This could explain why
the association is different in these two groups of animals.

So here is a warm up task for you.

Write a getSpearmCorAndPval function and run it on animals data
frame. To do that first you will need a function
getRanks(v::Vector{<:Real})::Vector{<:Float64} that returns the
ranks for you like this.

getRanks([500, 100, 1000]) # returns [2.0, 1.0, 3.0]
getRanks([500, 100, 500, 1000]) # returns [2.5, 1.0, 2.5, 4.0]
getRanks([500, 100, 500, 1000, 500]) # returns [3.0, 1.0, 3.0, 5.0, 3.0]
# etc.

Personally, I found Base.findall and Base.sort to be useful while
writing getRanks, but feel free to employ whatever constructs you
want. Anyway, once you got it, you can apply it to get Spearman’s
correlation coefficient (getCorAndPval(getRanks(v1),
getRanks(v2))).

Note: In real life to calculate the coefficient you would probably
use StatsBase.corspearman³³¹ .

³³¹https://juliastats.org/StatsBase.jl/stable/ranking/#StatsBase.corspearman
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Exercise 2
P-value multiplicity correction, a classic theme in this book. Let’s
revisit it again. Take a look at the following data frame.

Rand.seed!(321)

letters = map(string, 'a':'j')
bogusCors = Dfs.DataFrame(
    Dict(l => Rand.rand(Dsts.Normal(100, 15), 10) for l in letters)
)
bogusCors[1:3, 1:3]

a b c
102.04452249090404 126.62114430860125 72.58784224875757
81.10997573989799 101.02869856127887 123.65904493232378
85.54321961150684 109.98477666117208 132.32635179854458

Table 21: Table 17: DataFrame with random variables for bogus
correlations.

It contains a random made up data. In total we can calculate
binomial(10, 2) = 45 different unique correlations for the 10 columns
we got here. Out of them roughly 2-3 (binomial(10, 2) * 0.05 =
2.25) would appear to be valid correlations (𝑝 ≤ 0.05), but in reality
were the false positives (since we know that each column is a random
variable obtained from the same distribution). So here is a task for you.
Write a function that will return all the possible correlations
(coefficients and p-values). Check how many of them are false
positives. Apply a multiplicity correction
(e.g. Mt.BenjaminiHochberg() we met in Section  5.6 ) to the p-values
and check if the number of false positives drops to zero.

Exercise 3
Sometimes we would like to have a quick visual way to depict all the
correlations in one plot to get a general impression of the correlations
in the data (and possible patterns present). One way to do this is to use
a so called heatmap.
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So, here is a task for you. Read the documentation and examples for
CairoMakie’s heatmap³³² (or a heatmap from other plotting library) and

³³²https://docs.makie.org/stable/reference/plots/heatmap/

for the data in bogusCors from the previous section create a graph
similar to the one you see below.

Figure 37:  Figure 35: Correlation heatmap for data in bogusCors.

The graph depicts the Pearson’s correlation coefficients for all the
possible correlations in bogusCors. Positive correlations are depicted
as the shades of blue, negative correlations as the shades of red.

Your figure doesn’t have to be the exact replica of mine, for instance
you may choose a different color map³³³ .

³³³https://docs.makie.org/stable/explanations/colors/

If you like challenges you may add (write it in the center of a given
square) the value of the correlation coefficient (rounded to let’s say 2
decimal digits). Furthermore, you may add a significance marker
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(e.g. if a ‘raw’ p-value is ≤ 0.05 put ‘#’ character in a square) for the
correlations.

Exercise 4
Linear regression just like other methods mentioned in this book got
its assumptions³³⁴ that if possible should be verified. The R

³³⁴https://en.wikipedia.org/wiki/Regression_analysis#Underlying_assumptions

programming language got plot.lm³³⁵ function to verify them

³³⁵https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/plot.lm

graphically. The two most important plots (or at least the ones that I
understand the best) are scatter-plot of residuals vs. fitted values and
Q-Q plot³³⁶ of standardized residuals (see Figure  36 below).

³³⁶https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

Figure 38:  Figure 36: Diagnostic plot for regression model (ageFatM1).

If the assumptions hold, then the points in residuals vs. fitted plot
should be randomly scattered around 0 (on Y-axis) with equal spread
of points from left to right and no apparent pattern visible. On the
other hand, the points in Q-Q plot should lie along the Q-Q line which
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indicates their normal distribution. To me (I’m not an expert though)
the above seem to hold in Figure  36 above. If that was not the case
then we should try to correct our model. We might transform one or
more variables (for instance by using log10 function we met in Section
7.8.1 ) or fit a different model. Otherwise, the model we got may give
poor predictions. For instance, if our residuals vs. fitted plot displayed
a greater spread of points on the right side of X-axis, then most likely
our predictions would be more off for large values of explanatory
variable(s).

Anyway, your task here is to write a function drawDiagPlot that
accepts a linear regression model and returns a graph similar to Figure
36 above (when called with ageFatM1 as an input).

Below you will find some (but not all) of the functions that I found
useful while solving this task (feel free to use whatever functions you
want):

• Glm.predict
• Glm.residuals
• string(Glm.formula(mod))
• Cmk.qqplot

The rest is up to you.

Exercise 5
While developing the solution to exercise 4 (Section  7.9.4 ) we pointed
out on the flaws of iceMod2. We decided to develop a better model. So,
here is a task for you.

Read about constructing formula programmatically³³⁷ using
StatsModels package (GLM uses it internally).

³³⁷https://juliastats.org/StatsModels.jl/stable/formula/#Constructing-a-formula-pr
ogrammatically-1

Next, given the ice2 data frame below.

Rand.seed!(321)
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ice = RD.dataset("Ecdat", "Icecream") # reading fresh data frame
ice2 = ice[2:end, :] # copy of ice data frame
# an attempt to remove autocorrelation from Temp variable
ice2.TempDiff = ice.Temp[2:end] .- ice.Temp[1:(end-1)]

# dummy variables aimed to confuse our new function
ice2.a = Rand.rand(-100:1:100, 29)
ice2.b = Rand.rand(-100:1:100, 29)
ice2.c = Rand.rand(-100:1:100, 29)
ice2.d = Rand.rand(-100:1:100, 29)
ice2

Write a function that returns the minimal adequate model.

# return a minimal adequate (linear) model
function getMinAdeqMod(
    df::Dfs.DataFrame, y::String, xs::Vector{<:String}
    )::Glm.StatsModels.TableRegressionModel

The function accepts a data frame (df), name of the outcome variable
(y), and names of the explanatory variables (xs). In its insides the
function builds a full additive linear model (y ~ x1 + x2 + ... +
etc.). Then, it eliminates an x (predictor variable) with the greatest p-
value (only if it is greater than 0.05). The removal process is continued
for all xs until only xs with p-values ≤ 0.05 remain. If none of the xs
is impactful it should return the model in the form y ~ 1 (the intercept
of this model is equal to Stats.mean(y)). Test it out, e.g. for
getMinAdeqMod(ice2, names(ice2)[1], names(ice2)[2:end]) it
should return a model in the form Cons ~ Income + Temp +
TempDiff.

Hint: You can extract p-values for the coefficients of the model with
Glm.coeftable(m).cols[4]. GLM got its own function for constructing
model terms (Glm.term). You can add the terms either using + operator or
sum function (if you got a vector of terms).

Solutions - Association
In this sub-chapter you will find exemplary solutions to the exercises
from the previous section.
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Solution to Exercise 1
Let’s write getRanks, but let’s start simple and use it on a sorted vector
[100, 500, 1000] without ties. In this case the body of getRanks
function would be something like.

# for now the function is without types
function getRanksVer1(v)
    # or: ranks = collect(1:length(v))
    ranks = collect(eachindex(v))
    return ranks
end

getRanksVer1([100, 500, 1000])

[1, 2, 3]

Time to complicate stuff a bit by adding some ties in numbers.

# for now the function is without types
function getRanksVer2(v)
    initialRanks = collect(eachindex(v))
    finalRanks = zeros(length(v))
    for i in eachindex(v)
        indicesInV = findall(x -> x == v[i], v)
        finalRanks[i] = Stats.mean(initialRanks[indicesInV])
    end
    return finalRanks
end

(
    getRanksVer2([100, 500, 500, 1000]),
    getRanksVer2([100, 500, 500, 500, 1000])
)

([1.0, 2.5, 2.5, 4.0],
 [1.0, 3.0, 3.0, 3.0, 5.0])

The findall function accepts a function (here x -> x == v[i]) and a
vector (here v). Next, it runs the function on every element of the
vector and returns the indices for which the result was true. Here we
are looking for elements in v that are equal to the currently examined
(v[i]) element of v. Then, we use indicesInV to get the initialRanks.
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The initialRanks[indicesInV] returns a Vector that contains one or
more (if ties occur) initialRanks for a given element of v. Finally, we
calculate the average rank for a given number in v by using
Stats.mean. The function may be sub-optimall as for [100, 500,
500, 1000] the average rank for 500 is calculated twice (once for 500
at index 2 and once for 500 at index 3) and for [100, 500, 500, 500,
1000] the average rank for 500 is calculated three times. Still, we are
more concerned with the correct result and not the efficiency
(assuming that the function is fast enough) so we will leave it as it is.

Now, the final tweak. The input vector is shuffled.

# for now the function is without types
function getRanksVer3(v)
    sortedV = collect(sort(v))
    initialRanks = collect(eachindex(sortedV))
    finalRanks = zeros(length(v))
    for i in eachindex(v)
        indicesInSortedV = findall(x -> x == v[i], sortedV)
        finalRanks[i] = Stats.mean(initialRanks[indicesInSortedV])
    end
    return finalRanks
end

(
    getRanksVer3([500, 100, 1000]),
    getRanksVer3([500, 100, 500, 1000]),
    getRanksVer3([500, 100, 500, 1000, 500])
)

([2.0, 1.0, 3.0],
 [2.5, 1.0, 2.5, 4.0],
 [3.0, 1.0, 3.0, 5.0, 3.0])

Here, we let the built in function sort to arrange the numbers from v
in the ascending order. Then for each number from v we get its indices
in sortedV and their corresponding ranks based on that
(initialRanks[indicesInSortedV]). As in getRanksVer2 the latter is
used to calculate their average.

OK, time for cleanup + adding some types for future references (before
we forget them).
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function getRanks(v::Vector{<:Real})::Vector{<:Float64}
    sortedV::Vector{<:Real} = collect(sort(v))
    initialRanks::Vector{<:Int} = collect(eachindex(sortedV))
    finalRanks::Vector{<:Float64} = zeros(length(v))
    for i in eachindex(v)
        indicesInSortedV = findall(x -> x == v[i], sortedV)
        finalRanks[i] = Stats.mean(initialRanks[indicesInSortedV])
    end
    return finalRanks
end

(
    getRanks([100, 500, 1000]),
    getRanks([100, 500, 500, 1000]),
    getRanks([500, 100, 1000]),
    getRanks([500, 100, 500, 1000]),
    getRanks([500, 100, 500, 1000, 500])
)

([1.0, 2.0, 3.0],
 [1.0, 2.5, 2.5, 4.0],
 [2.0, 1.0, 3.0],
 [2.5, 1.0, 2.5, 4.0],
 [3.0, 1.0, 3.0, 5.0, 3.0])

At long last we can define getSpearmCorAndPval and apply it to
animals data frame.

function getSpearmCorAndPval(
    v1::Vector{<:Real}, v2::Vector{<:Real})::Tuple{Float64, Float64}
    return getCorAndPval(getRanks(v1), getRanks(v2))
end

getSpearmCorAndPval(animals.Body, animals.Brain)

(0.7162994456021085, 1.8128636948722132e-5)

The result appears to reflect the general relationship well (compare
with Figure 34).

Solution to Exercise 2
The solution should be quite simple assuming you did solve exercise 4
from ch05 (see Section  5.7.4 and Section  5.8.4 ) and exercise 5 from
ch06 (see Section  6.7.5 and Section  6.8.5 ).
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Let’s start with the helper functions, getUniquePairs (Section  5.8.4 )
and getSortedKeysVals (Section  4.5 ) that we developed previously.
For your convenience I paste them below.

function getUniquePairs(names::Vector{T})::Vector{Tuple{T,T}} where T
    @assert (length(names) >= 2) "the input must be of length >= 2"
    uniquePairs::Vector{Tuple{T,T}} =
        Vector{Tuple{T,T}}(undef, binomial(length(names), 2))
    currInd::Int = 1
    for i in eachindex(names)[1:(end-1)]
        for j in eachindex(names)[(i+1):end]
            uniquePairs[currInd] = (names[i], names[j])
            currInd += 1
        end
    end
    return uniquePairs
end

function getSortedKeysVals(d::Dict{T1,T2})::Tuple{
    Vector{T1},Vector{T2}} where {T1,T2}
    sortedKeys::Vector{T1} = keys(d) |> collect |> sort
    sortedVals::Vector{T2} = [d[k] for k in sortedKeys]
    return (sortedKeys, sortedVals)
end

Now, time to get all possible ‘raw’ correlations.

function getAllCorsAndPvals(
    df::Dfs.DataFrame, colsNames::Vector{String}
)::Dict{Tuple{String,String},Tuple{Float64,Float64}}

    uniquePairs::Vector{Tuple{String,String}} =
getUniquePairs(colsNames)
    allCors::Dict{Tuple{String,String},Tuple{Float64,Float64}} = Dict(
        (n1, n2) => getCorAndPval(df[!, n1], df[!, n2]) for (n1, n2)
        in
        uniquePairs)

    return allCors
end

getAllCorsAndPvals (generic function with 1 method)

We start by getting the uniquePairs for the columns of interest
colNames. Then we use dictionary comprehension to get our result. We
iterate through each pair for (n1, n2) in uniquePairs. Each
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uniquePair is composed of a tuple (n1, n2), where n1 - name1, n2 -
name2. While traversing the uniquePairs we calculate the
correlations and p-values (getCorAndPval) by selecting columns of
interest (df[:, n1] and df[:, n2]). And that’s it. Let’s see how it
works and how many false positives we got (remember, we expect 2 or
3).

allCorsPvals = getAllCorsAndPvals(bogusCors, letters)
falsePositves = (map(t -> t[2], values(allCorsPvals)) .<= 0.05) |> sum
falsePositves

3

First, we extract the values from our dictionary with
values(allCorsPvals). The values are a vector of tuples [(cor,
pval)]. To get p-values alone, we use map function that takes every
tuple (t) and returns its second element (t[2]). Finally, we compare
the p-values with our cutoff level for type 1 error (𝛼 = 0.05). And sum
the Bools (each true is counted as 1, and each false as 0).

Anyway, as expected we got 3 false positives. All that’s left to do is to
apply the multiplicity correction.

function adjustPvals(
    corsAndPvals::Dict{Tuple{String,String},Tuple{Float64,Float64}},
    adjMeth::Type{M}
)::Dict{Tuple{String,String},Tuple{Float64,Float64}} where
    {M<:Mt.PValueAdjustment}

    ks, vs = getSortedKeysVals(corsAndPvals)
    cors::Vector{<:Float64} = map(t -> t[1], vs)
    pvals::Vector{<:Float64} = map(t -> t[2], vs)
    adjustedPVals::Vector{<:Float64} = Mt.adjust(pvals, adjMeth())
    newVs::Vector{Tuple{Float64,Float64}} = collect(
        zip(cors, adjustedPVals))

    return Dict(ks[i] => newVs[i] for i in eachindex(ks))
end

adjustPvals (generic function with 1 method)
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The code is rather self explanatory and relies on step by step
operations: 1) getting our p-values (pvals), 2) applying an adjustment
method (adjMeth) on them (Mt.adjust), and 3) combining the adjusted
p-values (adjustedPVals) with cors again. For that last purpose we
use zip function we met in Section  6.8.1 . Finally we recreate a
dictionary using comprehension. Time for some tests.

allCorsPvalsAdj = adjustPvals(allCorsPvals, Mt.BenjaminiHochberg)
falsePositves = (map(t -> t[2], values(allCorsPvalsAdj)) .<= 0.05) |>
sum
falsePositves

0

We cannot expect a multiplicity correction to be a 100% error-proof
solution. Still, it’s better than doing nothing and in our case it did the
trick, we got rid of false positives.

Solution to Exercise 3
Let’s start by writing a function to get a correlation matrix. We could
use for that Stats.cor³³⁸ like so Stats.cor(bogusCors). But since we

³³⁸https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.cor

need to add significance markers then the p-values for the correlations
are indispensable. As far as I’m aware the package does not have it,
then we will write a function of our own.

function getCorsAndPvalsMatrix(
    df::Dfs.DataFrame,
    colNames::Vector{String})::Array{<:Tuple{Float64, Float64}}

    len::Int = length(colNames)
    corsPvals::Dict{Tuple{String,String},Tuple{Float64,Float64}} =
        getAllCorsAndPvals(df, colNames)
    mCorsPvals::Array{Tuple{Float64,Float64}} = fill((0.0, 0.0), len,
len)

    for cn in eachindex(colNames) # cn - column number
        for rn in eachindex(colNames) # rn - row number
            corPval = (
                haskey(corsPvals, (colNames[rn], colNames[cn])) ?
                corsPvals[(colNames[rn], colNames[cn])] :
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                get(corsPvals, (colNames[cn], colNames[rn]), (1, 1))
            )
            mCorsPvals[rn, cn] = corPval
        end
    end

    return mCorsPvals
end

getCorsAndPvalsMatrix (generic function with 1 method)

The function getCorsAndPvalsMatrix uses getAllCorsAndPvals we
developed previously (Section  7.9.2 ). Then we define the matrix (our
result), we initialize it with the fill function³³⁹ that takes an initial value

³³⁹https://docs.julialang.org/en/v1/base/arrays/#Base.fill

and returns an array of a given size filled with that value ((0.0, 0.0)).
Next, we replace the initial values in mCorsPvals with the correct ones
by using two for loops. Inside them we extract a tuple (corPval) from
the unique corsPvals. First, we test if a corPval for a given two
variables (e.g. “a” and “b”) is in the dictionary corsPvals (haskey etc.).
If so then we insert it into the mCorsPvals. If not, then we search in
corsPvals by its reverse (so, e.g. “b” and “a”) with get(corsPvals,
(colNames[cn], colNames[rn]), etc.). If that combination is not
present then we are looking for the correlation of a variable with itself
(e.g. “a” and “a”) which is equal to (1, 1) (for correlation coefficient
and p-value, respectively). Once we are done we return our
mCorsPvals matrix (aka Array). Time to give it a test run.

getCorsAndPvalsMatrix(bogusCors, ["a", "b", "c"])

3×3 Matrix{Tuple{Float64, Float64}}:
 (1.0, 1.0)             (0.194, 0.591239)      (-0.432251, 0.212195)
 (0.194, 0.591239)      (1.0, 1.0)             (-0.205942, 0.568128)
 (-0.432251, 0.212195)  (-0.205942, 0.568128)  (1.0, 1.0)

The numbers seem to be OK. In the future, you may consider changing
the function so that the p-values are adjusted, e.g. by using
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Mt.BenjaminiHochberg correction, but here we need some statistical
significance for our heatmap so we will leave it as it is.

Now, let’s move to drawing a plot.

mCorsPvals = getCorsAndPvalsMatrix(bogusCors, letters)
cors = map(t -> t[1], mCorsPvals)
pvals = map(t -> t[2], mCorsPvals)
nRows, _ = size(cors) # same num of rows and cols in our matrix
xs = repeat(1:nRows, inner=nRows)
ys = repeat(1:nRows, outer=nRows)[end:-1:1]

fig = Cmk.Figure()
ax1 = Cmk.Axis(fig[1, 1],
               xticks=(1:1:nRows, letters[1:nRows]),
               yticks=(1:1:nRows, letters[1:nRows][end:-1:1])
)
hm = Cmk.heatmap!(ax1, xs, ys, [cors...],
                  colormap=:RdBu, colorrange=(-1, 1))
Cmk.text!(ax1, xs, ys,
          text=string.(round.([cors...], digits=2)) .*
              getMarkerForPval.([pvals...]),
          align=(:center, :center),
          color=getColorForCor.([cors...]))
Cmk.hlines!(ax1, 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.vlines!(ax1, 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.Colorbar(fig[:, end+1], hm)
fig

We begin by preparing the necessary helper variables (mCorsPvals,
cors, pvals, nRows, xs, ys). The last two are the coordinates of the
centers of squares on the X- and Y-axis. The cors will be flattened row
by row using [cors...] syntax. For your information repeat([1, 2],
inner = 2) returns [1, 1, 2, 2] and repeat([1, 2], outer = 2)
returns [1, 2, 1, 2]. The ys vector is then reversed with [end:-1:1]
to make it reflect better the order of correlations in cors (left to right,
row by row). The same goes for yticks below. The above was
determined to be the right option by trial and error. The next
important parameter is colorrange=(-1, 1) it ensures that -1 is
always the leftmost color (red) from the :RdBu colormap and 1 is
always the rightmost color (blue) from the colormap. Without it the
colors would be set to minimum(cors) and maximum(cors) which we
do not want since the minimum will change from matrix to matrix. Over
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our heatmap we overlay the grid (hlines! and vlines!) to make the
squares separate better from each other. The centers of the squares are
at integers, and the edges are at halves, that’s why we start the ticks at
1.5. Finally, we add Colorbar as they did in the docs for Cmk.heatmap.
The result of this code is visible in Figure 33 from the previous section.

OK, let’s add the correlation coefficients and statistical significance
markers. But first, two little helper functions.

function getColorForCor(corCoeff::Float64)::String
    @assert (0 <= abs(corCoeff) <= 1) "abc(corCoeff) must be in range
[0-1]"
    return (abs(corCoeff) >= 0.65) ? "white" : "black"
end

function getMarkerForPval(pval::Float64)::String
    @assert (0 <= pval <= 1) "probability must be in range [0-1]"
    return (pval <= 0.05) ? "#" : ""
end

getMarkerForPval (generic function with 1 method)

As you can see getColorForCor returns a color (“white” or “black”) for
a given value of correlation coefficient (white color will make it easier
to read the correlation coefficient on a dark red/blue background of a
square). On the other hand getMarkerForPval returns a marker (“#”)
when a pvalue is below our customary cutoff level for type I error.

fig = Cmk.Figure()
ax, hm = Cmk.heatmap(fig[1, 1], xs, ys, [cors...],
    colormap=:RdBu, colorrange=(-1, 1),
    axis=(;
        xticks=(1:1:nRows, letters[1:nRows]),
        yticks=(1:1:nRows, letters[1:nRows][end:-1:1])
    ))
Cmk.text!(fig[1, 1], xs, ys,
    text=string.(round.([cors...], digits=2)) .*
        getMarkerForPval.([pvals...]),
    align=(:center, :center),
    color=getColorForCor.([cors...]))
Cmk.hlines!(fig[1, 1], 1.5:1:nRows, color="black", linewidth=0.25)
Cmk.vlines!(fig[1, 1], 1.5:1:nRows, color="black", linewidth=0.25)
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Cmk.Colorbar(fig[:, end+1], hm)
fig

The only new element here is Cmk.text! function, but since we used it
a couple of times throughout this book, then I will leave the
explanation of how the code piece works to you. Anyway, the result is
to be found below.

Figure 39:  Figure 37: Correlation heatmap for data in bogusCors with
the coefficients and significance markers.

It looks good. Also the number of significance markers is right.
Previously (Section  7.9.2 ) we said we got 3 significant correlations
(based on ‘raw’ p-values). Since, the upper right triangle of the
heatmap is a mirror reflection of the lower left triangle, then we should
see 6 significance markers altogether. As a final step (that I leave to
you) we could enclose the code from this task into a neat function
named, e.g. drawHeatmap.
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Solution to Exercise 4
OK, the code for this task is quite straightforward so let’s get right to
it.

function drawDiagPlot(
    reg::Glm.StatsModels.TableRegressionModel,
    byCol::Bool = true)::Cmk.Figure
    dim::Vector{<:Int} = (byCol ? [1, 2] : [2, 1])
    res::Vector{<:Float64} = Glm.residuals(reg)
    pred::Vector{<:Float64} = Glm.predict(reg)
    form::String = string(Glm.formula(reg))
    fig = Cmk.Figure(size=(800, 800))
    ax1 = Cmk.Axis(fig[1, 1],
                   title="Residuals vs Fitted\n" * form,
                   xlabel="Fitted values",
                   ylabel="Residuals")
    Cmk.scatter!(ax1, pred, res)
    Cmk.hlines!(ax1, 0, linestyle=:dash, color="gray")
    ax2 = Cmk.Axis(fig[dim...],
                   title="Normal Q-Q\n" * form,
                   xlabel="Theoretical Quantiles",
                   ylabel="Standarized residuals")
    Cmk.qqplot!(ax2,
                Dsts.Normal(0, 1),
                getZScore.(res, Stats.mean(res), Stats.std(res)),
                qqline=:identity)
    return fig
end

We begin with extracting residuals (res) and predicted (pred) values
from our model (reg). Additionally, we extract the formula (form) as a
string. Then, we prepare a scatter plot (Cmk.scatter) with pred and
res placed on X- and Y-axis, respectively. Next, we add a horizontal
line (Cmk.hlines!) at 0 on Y-axis (the points should be randomly
scattered around it). All that’s left to do is to build the required Q-Q
plot (qqplot) with X-axis that contains the theoretical standard normal
distribution³⁴⁰ (Dsts.Normal(0, 1)) and Y-axis with the standardized

³⁴⁰https://en.wikipedia.org/wiki/Normal_distribution#Standard_normal_
distribution

(getZScore) residuals (res). We also add qqline=:identity (here,
identity means x = y) to facilitate the interpretation [if two
distributions (on X- and Y-axis)] are alike then the points should lie
roughly on the line. Since the visual impression we get may depend on
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the spacial arrangement (stretching or tightening of the points on a
graph) our function enables us to choose (byCol) between column
(true) and row (false) alignment of the subplots.

For a change let’s test our function on the iceMod2 from Section  7.7 .
Behold the result of drawDiagPlot(iceMod2, false).

Figure 40:  Figure 38: Diagnostic plot for regression model (iceMod2).

Hmm, I don’t know about you but to me the bottom panel looks rather
normal. However, the top panel seems to display a wave (‘w’) pattern.
This may be a sign of auto-correlation (explanation in a moment) and
translate into instability of the estimation error produced by the model
across the values of the explanatory variable(s). The error will display
a wave pattern (once bigger once smaller). Now we got a choice, either
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we leave this model as it is (and we bear the consequences) or we try
to find a better one.

To understand what the auto-correlation means in our case let’s do a
thought experiment. Right now in the room that I am sitting the
temperature is equal to 20 degrees of Celsius (68 deg. Fahrenheit).
Which one is the more probable value of the temperature in 1 minute
from now: 0 deg. Cels. (32 deg. Fahr.) or 21 deg. Cels. (70 deg. Fahr.)? I
guess the latter is the more reasonable option. That is because the
temperature one minute from now is a derivative of the temperature in
the present (i.e. both values are correlated).

The same might be true for Icecream³⁴¹ data frame, since it contains
Temp column that we used in our model (iceMod2). We could try to

³⁴¹https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Icecream.html

remedy this by removing (kind of) the auto-correlation, e.g. with ice2
= ice[2:end, :] and ice2.TempDiff = ice.Temp[2:end] .-
ice.Temp[1:(end-1)] and building our model a new. This is what we
will do in the next exercise (although we will try to automate the
process a bit).

Solution to Exercise 5
Let’s start with a few helper functions.

function getLinMod(
    df::Dfs.DataFrame,
    y::String, xs::Vector{<:String}
    )::Glm.StatsModels.TableRegressionModel
    return Glm.lm(Glm.term(y) ~ sum(Glm.term.(xs)), df)
end

function getPredictorsPvals(
    m::Glm.StatsModels.TableRegressionModel)::Vector{<:Float64}
    allPvals::Vector{<:Float64} = Glm.coeftable(m).cols[4]
    # 1st pvalue is for the intercept
    return allPvals[2:end]
end

function getIndsEltsNotEqlM(v::Vector{<:Real}, m::Real)::Vector{<:Int}
    return findall(x -> !isapprox(x, m), v)
end
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We begin with getLinMod that accepts a data frame (df), name of the
dependent variable (y) and names of the independent/predictor
variables (xs). Based on the inputs it creates the model
programmatically using Glm.term.

Next, we go with getPredictorsPvals that returns the p-values
corresponding to a model’s coefficients.

Then, we define getIndsEltsNotEqlM that we will use to filter out the
highest p-value from our model.

OK, time for the main actor of the show.

# returns minimal adequate (linear) model
function getMinAdeqMod(
    df::Dfs.DataFrame, y::String, xs::Vector{<:String}
    )::Glm.StatsModels.TableRegressionModel

    preds::Vector{<:String} = copy(xs)
    mod::Glm.StatsModels.TableRegressionModel = getLinMod(df, y, preds)
    pvals::Vector{<:Float64} = getPredictorsPvals(mod)
    maxPval::Float64 = maximum(pvals)
    inds::Vector{<:Int} = getIndsEltsNotEqlM(pvals, maxPval)

    for _ in xs
        if (maxPval <= 0.05)
            break
        end
        if (length(preds) == 1 && maxPval > 0.05)
            mod = Glm.lm(Glm.term(y) ~ Glm.term(1), df)
            break
        end
        preds = preds[inds]
        mod = getLinMod(df, y, preds)
        pvals = getPredictorsPvals(mod)
        maxPval = maximum(pvals)
        inds = getIndsEltsNotEqlM(pvals, maxPval)
    end

    return mod
end

We begin with defining the necessary variables that we will update in
a for loop. The variables are: predictors (preds), linear model (mod), p-
values for the model’s coefficients (pvals), maximum p-value
(maxPval) and indices of predictors that we will leave in our model
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(inds). We start each iteration (for _ in xs) by checking if we
already reached our minimal adequate model. To that end we make
sure that all the remaining coefficients are statistically significant (if
(maxPval <= 0.05)) or if we run out of the explanatory variables
(length(preds) == 1 && maxPval > 0.05) we return our default (y ~
1) model (the intercept of this model is equal to Stats.mean(y)). If not
then we remove one predictor variable from the model (preds =
preds[inds]) and update the remaining helper variables (mod, pvals,
maxPval, inds). And that’s it, let’s see how it works.

ice2mod = getMinAdeqMod(ice2, names(ice2)[1], names(ice2)[2:end])
ice2mod

───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)  -0.0672      0.0988  -0.68    0.5024    -0.2707     0.1363
Income        0.0031      0.001    2.99    0.0062     0.001      0.0053
Temp          0.0032      0.0004   7.99    <1e-99     0.0024     0.004
TempDiff      0.0022      0.0007   2.93    0.0071     0.0006     0.0037
───────────────────────────────────────────────────────────────────────

It appears to work as expected. Let’s compare it with a full model.

ice2FullMod = getLinMod(ice2, names(ice2)[1], names(ice2)[2:end])

Glm.ftest(ice2FullMod.model, ice2mod.model)

F-test: 2 models fitted on 29 observations
───────────────────────────────────────────────────────────────
     DOF  ΔDOF     SSR    ΔSSR      R²      ΔR²      F*   p(>F)
───────────────────────────────────────────────────────────────
[1]   10        0.0193          0.8450
[2]    5    -5  0.0227  0.0034  0.8179  -0.0272  0.7019  0.6285
───────────────────────────────────────────────────────────────

It looks good as well. We reduced the number of explanatory variables
while maintaining comparable (p > 0.05) explanatory power of our
model.
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Time to check the assumptions with our diagnostic plot
(drawDiagPlot from Section  7.9.1 ).

Figure 41:  Figure 39: Diagnostic plot for regression model (ice2mod).

To me, the plot has slightly improved and since I run out of ideas how
to make our model even better I’ll leave it as it is.

Now, let’s compare our ice2mod, that aimed to counteract the auto-
correlation, with its predecessor (iceMod2). We will focus on the
explanatory powers (adjusted 𝑟2, the higher the better)

(
    Glm.adjr2(iceMod2),
    Glm.adjr2(ice2mod)
)

(0.6799892012945553, 0.796000295561351)

and the average prediction errors (the lower the better).
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(
    getAvgEstimError(iceMod2),
    getAvgEstimError(ice2mod)
)

(0.026114993652645798, 0.022116071809225545)

Again, it appears that we managed to improve our model’s prediction
power at a cost of slightly more difficult interpretation (go ahead
examine the output tables for Income + Temp + TempDiff vs. Income
+ Temp and explain to yourself how each variable influences the value
of Cons). This is usually the case, the less straightforward the model,
the less intuitive is its interpretation.

At a very long last we may check how our getMinAdeqMod will behave
when there are no meaningful explanatory variables.

getMinAdeqMod(ice2, "Cons", ["a", "b", "c", "d"])

Cons ~ 1

Coefficients:
────────────────────────────────────────────────────────────────────────
                Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
────────────────────────────────────────────────────────────────────────
(Intercept)  0.358517    0.012397  28.92    <1e-21   0.333123   0.383911
────────────────────────────────────────────────────────────────────────

In that case (no meaningful explanatory variables) our best estimate
(guess) of the value of y (here Cons) is the variable’s average
(Stats.mean(ice2.Cons)) which is returned as the Coef. for
(Intercept). In that case Std. Error is just the standard error of the
mean that we met in Section  5.2 (compare with getSem(ice2.Cons)).

Overall, our getMinAdeqMod should work reasonably well for a small
number of explanatory variables (the xs argument). When the number
of predictors grows, some of them are likely to be significant by
chance alone (compare with the discussion in Section  5.6 ).
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Anyway, building our minimal adequate model from top to bottom (as
we did here) is not the only possible procedure. Equally reasonable is
to apply the bottom to top approach. In that case we start with
separate models with 1 explanatory variable each. Of those models we
choose the one with the lowest p-value. Next we add to it one
explanatory variable at a time (based on the p-value, the lower the
better) until we reach our final model (no more significant explanatory
variables left). Sadly, the two methods although equally sound do not
always produce the same result (the same minimal adequate model).
Unfortunately, as far as I’m aware there is not much to be done with it,
so we must live with that fact.
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Time to say goodbye

They say that all that has its beginning must have its end. So I guess
it’s time to …, OK, but before we part let me give you a word of advice.

Julia is a nice programming language with many applications,
including statistics (probably way beyond the level covered in this
book). Still, if you are new to (Julia) programming and statistics then
most likely you should calibrate your tools first. Before you run some
statistical analysis you may want to try it out on an example from a
textbook written by an expert (not me though) and see if you get the
same (or at least comparable) result on your own. Although this is a
sound approach, I suspect you are more prone to visit some statistical
blog or internet forum and go with the examples that are contained
there. One such option is rseek.org³⁴² , i.e. a search engine for the R
programming language³⁴³ . In that case RCall.jl³⁴⁴ will be of assistance.

³⁴²https://rseek.org/
³⁴³https://en.wikipedia.org/wiki/R_(programming_language)
³⁴⁴https://github.com/JuliaInterop/RCall.jl

For instance let’s say that I copied the beerVolumes example (see
Section  5.2 ) from some R forum (I didn’t). Now, without leaving Julia
I can paste and execute the R’s code (R’s code goes between the
quotation marks in RC.R"").

import RCall as RC

RC.R"
beerVolumes <- c(504, 477, 484, 476, 519, 481, 453, 485, 487, 501)
t.test(beerVolumes, mu=500)
"

Note: For that code to work you need to have the R programming
language installed on your machine.

        One Sample t-test
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data:  beerVolumes
t = -2.3294, df = 9, p-value = 0.04479
alternative hypothesis: true mean is not equal to 500
95 percent confidence interval:
 473.7837 499.6163
sample estimates:
mean of x
    486.7

Then, I can compare it with the output of Ht.OneSampleTTest. That
way I can validate it and see if it is a credible Julia’s equivalent of R’s
t.test. The above, is also the way to test my understanding of Julia’s
function that stems from the docs³⁴⁵ .

³⁴⁵https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test

import HypothesisTests as Ht

beerVolumes = [504, 477, 484, 476, 519, 481, 453, 485, 487, 501]
Ht.OneSampleTTest(beerVolumes, 500)

One sample t-test
-----------------
Population details:
    parameter of interest:   Mean
    value under h_0:         500
    point estimate:          486.7
    95% confidence interval: (473.8, 499.6)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           0.0448

Details:
    number of observations:   10
    t-statistic:              -2.329353706113303
    degrees of freedom:       9
    empirical standard error: 5.70973826993069

Once I got both outputs that are similar enough I can be fairly sure I
did right. Otherwise I should investigate where the differences come
from and possibly make some necessary adjustments.
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Now, let me follow a word of advice with a word of warning. The book
contains a description of statistics the way I see it, not necessarily the
way it really is. Additionally, many times I simplified stuff, e.g. by
avoiding mathematics and mathematical formulas that go beyond the
level of a primary school (in Poland grades 1-8). Moreover, I also tried
to limit the number of Julia’s constructs in the examples. In the end I
wrote that book for myself from the past, so if you ever met me then
be sure to pass it on me. I would have loved to read it. But then again,
back in the day when I was a student there was no Julia, and my
English was too poor. Oh, well, just enjoy the book yourself.

Take care.

Bartłomiej Łukaszuk - author
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